Title:
Towards an understanding of the cloud formation potential of carbonaceous aerosol: laboratory and field studies

Thumbnail Image
Author(s)
Padro Martinez, Luz Teresa
Authors
Advisor(s)
Nenes, Athanasios
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
It is well known that atmospheric aerosols provide the sites for forming cloud droplets, and can affect the Earth's radiation budget through their interactions with clouds. The ability of aerosols to act as cloud condensation nuclei is a strong function of their chemical composition and size. The compositional complexity of aerosol prohibits their explicit treatment in atmospheric models of aerosol-cloud interactions. Nevertheless, the cumulative impact of organics on CCN activity is still required, as carbonaceous material can constitute up to 90% of the total aerosol, 10-70% of which is water soluble. Therefore it is necessary to characterize the water soluble organic carbon fraction by CCN activation, droplet growth kinetics, and surface tension measurements. In this thesis, we investigate the water soluble properties, such as surface tension, solubility, and molecular weight, of laboratory and ambient aerosols and their effect on CCN formation. A mechanism called Curvature Enhanced Solubility is proposed and shown to explain the apparent increased solubility of organics. A new method, called Köhler Theory Analysis, which is completely new, fast, and uses minimal amount of sample was developed to infer the molar volume (or molar mass) of organics. Due to the success of the technique in predicting the molar volume of laboratory samples, it was applied to aerosols collected in Mexico City. Additionally the surface tension, CCN activity, and droplet growth kinetics of these urban polluted aerosols were investigated. Studies performed for the water soluble components showed that the aerosols in Mexico City have surfactants present, can readily become CCN, and have growth similar to ammonium sulfate. Finally, aerosols from three different polluted sources, urban, bovine, and ship emissions, were collected and characterized. The data assembled was used to predict CCN concentrations and access our understanding of the system. From these analyses, it was evident that knowledge of the chemical composition and mixing state of the aerosol is necessary to achieve agreement between observations and predictions. The data obtained in this thesis can be introduced and used as constraints in aerosol-cloud interaction parameterizations developed for global climate models, which could lead to improvements in the indirect effect of aerosols.
Sponsor
Date Issued
2009-08-21
Extent
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI