Development of specialized base primitives for meso-scale conforming truss structures

Thumbnail Image
Graf, Gregory C.
Rosen, David W.
Associated Organization(s)
Supplementary to
The advent of rapid manufacturing has enabled the realization of countless products that have heretofore been infeasible. From customized clear braces to jet fighter ducts and one-off dental implants, rapid manufacturing allows for increased design complexity and decreased manufacturing costs. The manufacturing capabilities of this process have evolved to the point that they have surpassed current design capabilities. Meso-scale lattice structures can now be built that contain more lattice struts than it is reasonable to efficiently define. This work has attempted to create a method for designing such lattice structures that is efficient enough to allow for the design of large or complex problems. The main hindrance to the design of complex meso-scale lattice problems is essentially the need to define the strut diameters. While it is obvious that a large design would contain more struts than can be specified by hand, designs also quickly surpass the current capabilities of computational optimization routines. To overcome this problem, a design method has been developed that uses a unit-cell library correlated to finite element analysis of the bounding geometry to tailor the structure to the anticipated loading conditions. The unit-cell library is a collection of base lattice primitives, or unit-cells, that have been specialized for certain applications. In this case, primitives have been created that perform best under the types of stress analyzed by finite element analysis. The effectiveness of this process has been demonstrated through several example problems. In all cases, the unit-cell library approach was able to create structures in less time than current methods. The resulting structures had structural performance slightly lower than similar models created through optimization methods, although the extent of this degradation was slight. The method developed in this work performs extremely well, and is able to create designs for even the most complex lattice structures. There is room for future development, however, in the streamlining of the design process and consideration of higher-order affects within unit-cells.
Date Issued
Resource Type
Resource Subtype
Rights Statement
Rights URI