Novel studies on the formation and chemical reactivity of compound clusters and their precursors in the gas and liquid phase

Thumbnail Image
Bradshaw, James Adam Ferguson
Whetten, Robert L.
Associated Organization(s)
Organizational Unit
Supplementary to
Novel Studies on the Formation and Chemical Reactivity of Compound Clusters and Their Precursors in the Gas and Liquid Phase James A. Bradshaw 139 Pages Directed by Dr. Robert L. Whetten Presented are four separate and unique studies on molecular and nanoscale systems: Atmospheric hydration and aggregation of NaCl clusters, highly water-soluble aurous-thiolate oligomers, water-soluble gold clusters from aurous-thiolate oligomer precursors, and gold iodide clusters. Adsorption of water on cationic and anionic sodium chloride clusters is investigated to elucidate active sites of molecular interaction as well as primary aggregate formation kinetics. Considered an exceptionally abundant atmospheric species, experiments are conducted to further quantify gas phase chemistry and hydration/solvation of alkali halides. Currently the most soluble of all known gold-thiolates, para-mercaptobenzoic acid-based (pMBA) aurous-thiolate oligomers are investigated and physical and chemical properties quantified. Solubility, structural conformation, and poly-dispersity of higher homologs are observed with the goal of further applications in clusters research, medical and biomedical, and industry. Gold thiolate clusters, synthesized using pMBA-based oligomers, are investigated through reductive formation in solution. UV-VIS and UV-VIS-NIR spectroscopy is undertaken to assign structures based on predictions of the HOMO-LUMO gap and other electronic transitions. Gold iodide is investigated in relation to the common thiolate-halide analogy. Synthesis and characterization of a solid precursor as well as anion and cation cluster formation is presented as part of an ongoing collaboration.
Date Issued
Resource Type
Resource Subtype
Rights Statement
Rights URI