Countering murphys law: the use of anticipation and improvisation via an episodic memory in support of intelligent robot behavior

Thumbnail Image
Endo, Yoichiro
Arkin, Ronald C.
Associated Organizations
Organizational Unit
Supplementary to
Recently in robotics, substantial efforts have been invested on critical applications such as military, nursing, and search-and-rescue. These applications are critical in a sense that the robots may directly deal with human lives in life-or-death situations, and they are therefore required to make highly intelligent decisions as rapidly as possible. The intelligence we are looking for in this type of situations is proactiveness: the ability to anticipate as well as improvise. Anticipation here means that the robot can assess the current situation, predict the future consequence of the situation, and execute an action to have desired outcome based on the determined assessment and prediction. On the other hand, improvisation is performed when the consequence of the situation is not fully known. In other words, it is the ability to deal with a novel situation based on knowledge or skill being acquired before. In this presentation, we introduce a biologically inspired computational model of proactive intelligent behavior for robots. Integrating multiple levels of machine learning techniques such as temporal difference learning, instance-based learning, and partially observable Markov decision process, aggregated episodic memories are processed in order to accomplish anticipation as well as improvisation. How this model can be implemented within a software architectural framework and integrated into a physically realized robotic system is also explained. The experimental results using a real robot and high fidelity 3D simulators are then presented in order to help us understand how extended experience of a robot influences its ability to behave proactively.
Date Issued
Resource Type
Resource Subtype
Rights Statement
Rights URI