Title:
Encapsulation of nanoparticles in metal-organic frameworks for air purification

dc.contributor.advisor Walton, Krista S.
dc.contributor.author Tulig, Karen Renee
dc.contributor.committeeMember Jones, Christopher W.
dc.contributor.committeeMember Sholl, David S.
dc.contributor.committeeMember Wilkinson, Angus P.
dc.contributor.committeeMember Xia, Younan
dc.contributor.department Chemical and Biomolecular Engineering
dc.date.accessioned 2017-08-17T18:56:30Z
dc.date.available 2017-08-17T18:56:30Z
dc.date.created 2016-08
dc.date.issued 2016-05-19
dc.date.submitted August 2016
dc.date.updated 2017-08-17T18:56:30Z
dc.description.abstract Metal-organic frameworks (MOFs) and nanoparticles in MOFs (NP@MOF) are investigated for carbon monoxide adsorption and catalytic oxidation. In this work, gold nanoparticles (AuNPs) are encapsulated in UiO-66, a zirconium-based MOF. The use of zirconium propoxide (Zr(OnPr)) in place of zirconium chloride (ZrCl4) leads to an alternative synthesis route for producing high-quality crystals of UiO-66 without generating by-product HCl. This new method enables the inclusion of HCl-sensitive gold nanoparticles into the mother solution for encapsulation by UiO-66. Further investigations examine the effects of the solvent ratio, modulator concentration, AuNP capping agent, and UiO-66(Zr(OnPr)) modulator on the UiO-66(Zr(OnPr)) structure and porosity, AuNP diameter, UiO-66(Zr(OnPr)) particle geometry, and AuNP location. These studies show that the AuNP capping agent and UiO-66(Zr(OnPr)) modulator have the most significant effect on the Au@UiO-66(Zr(OnPr)) properties. Conclusive evidence showing that the AuNPs are completely confined within the UiO-66(Zr(OnPr)) particles is not attained, but the preliminary data will guide future endeavors. Additionally, this HCl-free synthesis is applied to the functional versions of UiO-66 resulting in the preparation of a series of UiO-66-X(Zr(OnPr)), where X = {–H, –NH2, –NO2, –Naph, –Anth, –Cl2, –Br, –(CH3)2, –COOH, –OH, and –(OH)}. In addition, the potential of UiO-66 as a catalyst support is probed using CO oxidation as a probe reaction throughout this work. First, preformed AuNPs are deposited onto the surfaces of UiO-66, titanium dioxide (TiO2), and zirconium dioxide (ZrO2). This colloidal deposition effectively decouples the AuNP factors such as size, shape, and oxidation state, from the support effect allowing a systematic study of the key support attributes. This study reveals a correlation between the oxygen storage capacity (OSC) and the catalytic activity of the materials with Au on UiO-66 exhibiting an enhanced OSC, due to the unusual chemistry introduced by the metal-linker interactions. Lastly, Au@UiO-66 prepared via encapsulation is compared to physical mixtures of Au on UiO-66 prepared with various AuNP diameters to probe the effects of the encapsulation procedure. Au@UiO-66 showed improved activity compared to the corresponding physical mixture. The enhanced catalytic activity suggests that synergism is introduced during the encapsulation procedure. This synergism potentially occurs due to partial confinement within UiO-66 particles and/or aggregates which increases the surface area of contact between the AuNPs and UiO-66. This increased contact area results in more interface sites which are typically believed to be responsible for the catalytic abilities of supported AuNPs. This dissertation concludes by summarizing the experimental results, determining trends between the chapters, and recommending topics for future research projects. In addition, limitations are acknowledged and possible solutions presented.
dc.description.degree Ph.D.
dc.format.mimetype application/pdf
dc.identifier.uri http://hdl.handle.net/1853/58576
dc.language.iso en_US
dc.publisher Georgia Institute of Technology
dc.subject Metal-organic framework
dc.subject UiO-66
dc.subject Gold nanoparticles
dc.subject CO oxidation
dc.title Encapsulation of nanoparticles in metal-organic frameworks for air purification
dc.type Text
dc.type.genre Dissertation
dspace.entity.type Publication
local.contributor.advisor Walton, Krista S.
local.contributor.corporatename School of Chemical and Biomolecular Engineering
local.contributor.corporatename College of Engineering
relation.isAdvisorOfPublication 11d95268-9448-4cff-b662-e0799a34d2a6
relation.isOrgUnitOfPublication 6cfa2dc6-c5bf-4f6b-99a2-57105d8f7a6f
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
thesis.degree.level Doctoral
Files
Original bundle
Now showing 1 - 2 of 2
Thumbnail Image
Name:
TULIG-DISSERTATION-2016.pdf
Size:
13.96 MB
Format:
Adobe Portable Document Format
Description:
No Thumbnail Available
Name:
karen-Au2.avi
Size:
99.01 MB
Format:
Microsoft Audio/Video Inerleaved
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
3.86 KB
Format:
Plain Text
Description: