Title:
Atomistic modeling of the AL and Fe₂O₃ material system using classical molecular dynamics

dc.contributor.advisor Zhou, Min
dc.contributor.author Tomar, Vikas en_US
dc.contributor.committeeMember McDowell, David L.
dc.contributor.committeeMember Qu, Jianmin
dc.contributor.committeeMember Karl Jacob
dc.contributor.committeeMember Naresh Thadhani
dc.contributor.committeeMember Sathya Hanagud
dc.contributor.department Mechanical Engineering en_US
dc.date.accessioned 2006-01-18T22:17:04Z
dc.date.available 2006-01-18T22:17:04Z
dc.date.issued 2005-10-18 en_US
dc.description.abstract In the current research, a framework based on classical molecular dynamics (MD) is developed for computational mechanical analyses of complex nanoscale materials. The material system of focus is a combination of fcc-Al and and #945;-Fe₂O₃. The framework includes the development of an interatomic potential, a scalable parallel MD code, nanocrystalline composite structures, and methodologies for the quasistatic and dynamic strength analyses. The interatomic potential includes an embedded atom method (EAM) cluster functional, a Morse type pair function, and a second order electrostatic interaction function. The framework is applied to analyze the nanoscale mechanical behavior of the Al+Fe₂O₃ material system in two different settings. First, quasistatic strength analyses of nanocrystalline composites with average grain sizes varying from 3.9 nm to 7.2 nm are carried out. Second, shock wave propagation analyses are carried out in single crystalline Al, Fe₂O₃, and one of their interfaces. The quasistatic strength analyses reveal that the deformation mechanisms in the analyzed nanocrystalline structures are affected by a combination of factors including high fraction of grain boundary atoms and electrostatic forces. The slopes as well as the direct or inverse nature of observed Hall-Petch (H-P) relationships are strongly dependent upon the volume fraction of the Fe₂O₃ phase in the composites. The compressive strengths of single phase nanocrystalline structures are two to three times the tensile strengths owing to the differences in the movement of atoms in grain boundaries during compressive and tensile deformations. Analyses of shock wave propagation in single crystalline systems reveal that the shock wave velocity (US) and the particle velocity (UP) relationships as well as the type and the extent of shock-induced deformation in single crystals are strongly correlated with the choice of crystallographic orientation for the shock wave propagation. Analyses of shock wave propagation through an interface between Al and Fe2O3 point to a possible threshold UP value beyond which a shock-induced structural transformation that is reactive in nature in a region surrounding the interface may be taking place. Overall, the framework and the analyses establish an important computational approach for investigating the mechanical behavior of complex nanostructures at the atomic length- and time-scales. en_US
dc.description.degree Ph.D. en_US
dc.format.extent 12829421 bytes
dc.format.mimetype application/pdf
dc.identifier.uri http://hdl.handle.net/1853/7502
dc.language.iso en_US
dc.publisher Georgia Institute of Technology en_US
dc.subject Shock wave propagation analyses en_US
dc.subject Nanocrystalline structures
dc.subject Molecular dynamics
dc.subject.lcsh Nanostructured materials en_US
dc.subject.lcsh Shock waves en_US
dc.subject.lcsh Molecular dynamics en_US
dc.subject.lcsh Nanocrystals en_US
dc.title Atomistic modeling of the AL and Fe₂O₃ material system using classical molecular dynamics en_US
dc.type Text
dc.type.genre Dissertation
dspace.entity.type Publication
local.contributor.advisor Zhou, Min
local.contributor.corporatename George W. Woodruff School of Mechanical Engineering
local.contributor.corporatename College of Engineering
relation.isAdvisorOfPublication fc76c5b8-74a4-465e-bec3-175d191f022f
relation.isOrgUnitOfPublication c01ff908-c25f-439b-bf10-a074ed886bb7
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
Tomar_Vikas_200510_PhD.pdf
Size:
12.24 MB
Format:
Adobe Portable Document Format
Description: