Title:
Microstructural Prediction of Additively Manufactured Multi-Phase Materials

Thumbnail Image
Author(s)
Standish, Mike
Authors
Advisor(s)
Garmestani, Hamid
Liang, Steven Y.
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
Material modeling is the central theme of this thesis. Experimentation of titanium alloys and composites provided background knowledge of the time and financial costs associated with testing and re-testing properties in a forensic, trial-and-error manner. The model discussed in this thesis merges material properties and process parameters to generate a unique microstructure for the titanium 6Al-4V (Ti-6-4) alloy produced using selective laser melting additive manufacturing SLM-AM. The material texture is generated by first calculating melt pool geometries using Rosenthal Solution equations and Bunge matrix transformations. The result is a single-phase representation of a liquidus, BCC beta titanium phase deposited over a random-orientation substrate. The texture is then transformed into a two-phase alpha (HCP)-beta microstructure through transformation pathways modeled based on mechanisms discovered in other studies. The final texture product can then be input into other models capable of computing mechanical properties based on texture inputs. Though no model can be fully comprehensive in simulating material nature and behavior, the model in this thesis adapts enough experimental data and follows enough phenomenological observations within the field of material science and engineering to produce simulated samples capable of achieving realistic property values. The model is scripted in a manner where it can be adapted for alternative materials by inputting different properties and tailoring the process settings. Multiple benefits arise from being able to model material microstructures without the need to physically test real-world samples. There is a substantial time savings in being able to quickly adjust properties and formulations. Expensive equipment, materials, and labor can all be avoided, and a larger testing matrix can be executed through this approach.
Sponsor
Date Issued
2023-05-03
Extent
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI