Mars Entry, Descent and Landing Parametric Trades

Author(s)
Wells, Grant
Advisor(s)
Braun, Robert D.
Editor(s)
Associated Organization(s)
Organizational Unit
Daniel Guggenheim School of Aerospace Engineering
The Daniel Guggenheim School of Aeronautics was established in 1931, with a name change in 1962 to the School of Aerospace Engineering
Supplementary to:
Abstract
The purpose of this investigation is to begin forming a dataset to be the basis of a Mars entry, descent and landing mission design handbook for planetary probes. The premise of the project is that Mars entry, descent and landing can be parameterized with five variables: (1) entry mass, (2) entry velocity, (3) entry flight path angle, (4) vehicle aeroshell diameter, and (5) vertical lift-to-drag ratio. For combinations of these input parameters, the following trajectory information will be determined: peak deceleration, peak heat rate, heat load, and the altitude at which Mach 2 is reached (for parachute deployment).
Sponsor
Date
2006-05-01
Extent
Resource Type
Text
Resource Subtype
Masters Project
Rights Statement
Unless otherwise noted, all materials are protected under U.S. Copyright Law and all rights are reserved