Title:
Modeling of Hydrodynamic Circulation and Cohesive Sediment Transport and Prediction of Shoreline Erosion in Hartwell Lake, SC/GA

Thumbnail Image
Author(s)
Seker-Elci, Sebnem
Authors
Advisor(s)
Work, Paul A.
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
This dissertation addresses hydrodynamics, sediment transport and shoreline erosion within the main pool of Hartwell Lake, a U.S. Army Corps of Engineers reservoir built on the Savannah River, between Anderson, South Carolina, and Hartwell, Georgia, USA. A U.S. Environmental Protection Agency (EPA) Superfund site is located on a tributary of Hartwell Lake because of high concentrations of polychlorinated biphenyls (PCBs) in the lake sediments. PCBs are hydrophobic and typically bond to fine-grained sediments, such as silts and clays. The primary goal of the study was to document, through field measurements, and model, using a 3-D numerical model of flow and sediment transport, the fate of sediments within the main pool of Hartwell Lake. To document forty years of sedimentation within the reservoir, bathymetric survey data were collected in Hartwell Lake during the period, February 10-14, 2003. The bathymetric surveys revealed that deposition was, in places, up to two meters thickness in forty years. During the field campaign, flow velocity measurements were made primarily to provide a check on the magnitude of the velocities predicted by the numerical model used in the study. Shoreline surveys provided data for the modeling procedure for shoreline change. This in turn facilitated specification of the sediment flux into the domain via shoreline erosion. Hartwell Lake is located near the southern terminus of the Appalachian mountain chain in the Piedmont region. Sediments contain high fractions of silt and clay. Hartwell Lake has a shoreline length of 1548 km, and erosion of lake shorelines has been a significant problem for many homeowners. As of September 2002, there were 1123 permitted riprap installations, and 393 permitted retaining walls, for a total of 1516 erosion control structures along the lakeshores (source: USACE Hartwell Office), an indication of the magnitude of the erosion problem. To quantify the erosion rate of the shorelines, an approach that relates erosion rates to wind wave forces was developed. A simplified representation of the shape of beach profiles is employed. Historical shoreline change rates were quantified by comparing available digital aerial photos taken in different years, and the erosion prediction model was calibrated using these computed erosion rates. Sediments derived from shoreline erosion were introduced to the model as an additional source along the model boundary, and the fate of the eroding sediments was investigated via numerical modeling.
Sponsor
Date Issued
2004-07-12
Extent
3020693 bytes
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI