Probabilistic Cost, Risk, and Throughput Analysis of Lunar Transportation Architectures

Author(s)
Alemany, Kristina
Olds, John R.
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Daniel Guggenheim School of Aerospace Engineering
The Daniel Guggenheim School of Aeronautics was established in 1931, with a name change in 1962 to the School of Aerospace Engineering
Series
Supplementary to:
Abstract
The President's Vision for Space Exploration presents a need to determine the best architecture and set of vehicle elements in order to achieve a sustained human lunar exploration program. The Lunar Architecture Stochastic Simulator and Optimizer (LASSO), a new simulation-based capability based on discrete-event simulation, was created to address this question by probabilistically simulating lunar transportation architecture based on cost, reliability, and throughput figures of merit. In this study, two competing lunar transportation architectures are examined for a variety of launch vehicle scenarios to determine the best approach for human lunar exploration. Additionally, the two architectures are also compared for varying available ground infrastructure and desired flight rates. It is concluded that an expendable architecture is favored, using man-rated versions of existing evolved expendable launch vehicles (EELVs) for crew launches and developing a heavy-lift launch vehicle for cargo launches.
Sponsor
Date
2006-03
Extent
Resource Type
Text
Resource Subtype
Paper
Rights Statement
Rights URI