On the nonnegative least squares

Author(s)
Santiago, Claudio Prata
Advisor(s)
Barnes, Earl R.
Editor(s)
Associated Organization(s)
Series
Supplementary to:
Abstract
In this document, we study the nonnegative least squares primal-dual method for solving linear programming problems. In particular, we investigate connections between this primal-dual method and the classical Hungarian method for the assignment problem. Firstly, we devise a fast procedure for computing the unrestricted least squares solution of a bipartite matching problem by exploiting the special structure of the incidence matrix of a bipartite graph. Moreover, we explain how to extract a solution for the cardinality matching problem from the nonnegative least squares solution. We also give an efficient procedure for solving the cardinality matching problem on general graphs using the nonnegative least squares approach. Next we look into some theoretical results concerning the minimization of p-norms, and separable differentiable convex functions, subject to linear constraints described by node-arc incidence matrices for graphs. Our main result is the reduction of the assignment problem to a single nonnegative least squares problem. This means that the primal-dual approach can be made to converge in one step for the assignment problem. This method does not reduce the primal-dual approach to one step for general linear programming problems, but it appears to give a good starting dual feasible point for the general problem.
Sponsor
Date
2009-08-19
Extent
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI