Improved Mechanical Properties of Chemically Amplified, Positive Tone, Polynorbornene Dielectric

Author(s)
Schwartz, Jared M.
Sutlief, Alexandra E.
Mueller, Brennen K.
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
School of Chemical and Biomolecular Engineering
School established in 1901 as the School of Chemical Engineering; in 2003, renamed School of Chemical and Biomolecular Engineering
Organizational Unit
Series
Supplementary to:
Abstract
The mechanical properties of an aqueous developed, chemically amplified, polynorbornene-based permanent dielectric have been investigated. The previously reported hexafluoroisopropanol norbornene and tert-butyl ester norbornene copolymer has been modified via two routes to improve the mechanical properties of the polymer and enable thick-film deposition. First, a third monomer, butyl norbornene (ButylNB) was added to the polymer backbone. The inclusion of 24 mol% ButylNB lowered the elastic modulus from 2.64 to 2.35 GPa and raised the dielectric constant from 2.78 to 3.48. The second approach added a lowmolecular weight, plasticizing additive in the copolymer formulation. Many additives were immiscible with the resin or did not affect the mechanical properties. Trimethyololpropane ethoxylate (TMPEO) was found to be a miscible additive that improved mechanical properties and could participate in crosslinking the final dielectric material. TMPEO interacted with the PAG, lowering its decomposition temperature. An optimal formulation and processing scheme were determined. A formulation with 10 pphr TMPEO was measured to have a dielectric constant of 2.94, an elastic modulus of 1.95 GPa, a sensitivity at 365 nm of 175 mJ/cm2, and a contrast of 4.36.
Sponsor
Date
2014-12
Extent
Resource Type
Text
Resource Subtype
Article
Rights Statement
This work is licensed under Creative Commons Attribution (unported, v4.0) License.
Rights URI