Title:
Shape-Selective Growth of Nanoscale Materials: Insights From Multi-Scale Theory and Simulation

dc.contributor.author Fichthorn, Kristen
dc.contributor.corporatename Georgia Institute of Technology. School of Chemical and Biomolecular Engineering en_US
dc.contributor.corporatename Pennsylvania State University en_US
dc.date.accessioned 2019-10-31T14:40:11Z
dc.date.available 2019-10-31T14:40:11Z
dc.date.issued 2019-10-16
dc.description Presented on October 16, 2019 from 3:00 p.m.- 4:00 p.m. in the Molecular Science and Engineering Building (MoSE), Room G011, Georgia Tech. en_US
dc.description Kristen Fichthorn is the Merrell Fenske Professor of Chemical Engineering and a Professor of Physics at the Pennsylvania State University. She received a B.S. in Chemical Engineering from the University of Pennsylvania in 1985 and a Ph.D. in Chemical Engineering from the University of Michigan in 1989. She spent one year as an IBM Postdoctoral Fellow in the Department of Chemical Engineering at the University of California at Santa Barbara before joining the Department of Chemical Engineering at Penn State as an Assistant Professor in 1990. Professor Fichthorn’s research is primarily in multiscale simulation of fluid-solid interfaces, in which she applies theoretical techniques ranging from quantum density functional theory to molecular dynamics, Monte Carlo methods, and continuum theories to a diverse array of applications in nanoscale materials, thin-film and crystal growth, colloidal assembly, and wetting. In addition to being recognized by Penn State for her outstanding research and teaching, she is the recipient of the NSF Presidential Young Investigator Award (1990), an Alexander von Humboldt Research Fellowship (1998), she is a Fellow of the American Physical Society (2011), a Fellow of the American Institute of Chemical Engineers (2017), and a recipient of the Nanoscale Science and Engineering Forum Award of the American Institute of Chemical Engineers (2019). en_US
dc.description Runtime: 56:09 minutes en_US
dc.description.abstract Metal nanocrystals have gained tremendous attention due to their superior performance in various applications, ranging from selective catalysis to electronic devices to plasmonic applications, such as photovoltaics and sensing. The properties of nanocrystals are highly sensitive to their size and shape. To this end, solution-phase synthetic protocols have been highly successful at producing a variety of nanocrystal structures. However, great challenges remain in achieving high selectivity to particular nanostructures. A significant difficulty lies in understanding and controlling shape evolution in these systems. A deep, fundamental understanding of the phenomena that promote selective growth in these syntheses would enable tight control of nanostructure morphologies in next-generation techniques. I will discuss our efforts to understand the workings of PVP, a polymer capping molecule that facilitates the formation of selective Ag nanoparticle shapes. In these studies, we use first-principles density-functional theory (DFT) to characterize the binding of PVP repeat units to Ag(100) and Ag(111) surfaces. To understand the solution-phase binding of PVP to these Ag surfaces, we develop a new metal-organic many-body force field with high fidelity to DFT. We implement this force field into molecular-dynamics (MD) simulations to characterize the potential of mean force and the mean first-passage times for solution-phase Ag atoms to reach PVP-covered Ag facets. Using these mean first-passage times, we predict kinetic shapes of large Ag nanocrystals (around 100 nm) and show that these should be {100}-faceted cubes. We also use MD simulations to characterize the interfacial free energies of PVP-covered Ag facets in solution. The thermodynamic shapes that we predict in these calculations are truncated octahedra, with a predominance of {111} facets. These findings are consistent with experimental observations that sufficiently small Ag nanocrystals tend to have shapes with a predominance of {111} facets and larger nanocrystals become {100}-faceted during solution-phase growth in the presence of PVP. Though our studies are consistent with experiments that demonstrate nanocube growth can be directed by PVP alone, many studies have demonstrated that more robust nanocube syntheses can be achieved in the presence of halide additives. We use DFT-based ab initio thermodynamics calculations to probe the influence of chloride on Ag nanoshapes. Consistent with experiment, these calculations indicate that chloride adsorption alone can lead to truncated Ag cubes. “Late breaking” calculations indicate there is a synergistic interaction between Cl and PVP, whereby the combination of these two additives can lead to “pointy” Ag cubes. en_US
dc.format.extent 56:09 minutes
dc.identifier.uri http://hdl.handle.net/1853/62009
dc.language.iso en_US en_US
dc.publisher Georgia Institute of Technology en_US
dc.relation.ispartofseries School of Chemical and Biomolecular Engineering Seminar Series en_US
dc.relation.ispartofseries School of Chemical and Biomolecular Engineering Seminar Series
dc.subject Density functional theory en_US
dc.subject Molecular dynamics en_US
dc.subject Nanoscience en_US
dc.title Shape-Selective Growth of Nanoscale Materials: Insights From Multi-Scale Theory and Simulation en_US
dc.type Moving Image
dc.type.genre Lecture
dspace.entity.type Publication
local.contributor.corporatename School of Chemical and Biomolecular Engineering
local.contributor.corporatename College of Engineering
local.relation.ispartofseries School of Chemical and Biomolecular Engineering Seminar Series
relation.isOrgUnitOfPublication 6cfa2dc6-c5bf-4f6b-99a2-57105d8f7a6f
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
relation.isSeriesOfPublication 388050f3-0f40-4192-9168-e4b7de4367b4
Files
Original bundle
Now showing 1 - 4 of 4
No Thumbnail Available
Name:
fichthorn.mp4
Size:
451.06 MB
Format:
MP4 Video file
Description:
Download Video
No Thumbnail Available
Name:
fichthorn_videostream.html
Size:
1.29 KB
Format:
Hypertext Markup Language
Description:
Streaming Video
No Thumbnail Available
Name:
transcript.txt
Size:
41.3 KB
Format:
Plain Text
Description:
Transcription Text
Thumbnail Image
Name:
thumbnail.jpg
Size:
63.43 KB
Format:
Joint Photographic Experts Group/JPEG File Interchange Format (JFIF)
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.13 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections