Knowledge-based segmentation of SAR images

Thumbnail Image
Author(s)
Haker, Steven
Sapiro, Guillermo
Tannenbaum, Allen R.
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Wallace H. Coulter Department of Biomedical Engineering
The joint Georgia Tech and Emory department was established in 1997
Series
Supplementary to:
Abstract
A new approach for the segmentation of still and video SAR images is described. A priori knowledge about the objects present in the image, e.g., target, shadow, and background terrain, is introduced via Bayes' rule. Posterior probabilities obtained in this way are then anisotropically smoothed, and the image segmentation is obtained via MAP classifications of the smoothed data. When segmenting sequences of images, the smoothed posterior probabilities of past frames are used to learn the prior distributions in the succeeding frame. We show, via a large number of examples from public data sets, that this method provides an efficient and fast technique for addressing the segmentation of SAR data.
Sponsor
Date
1998
Extent
Resource Type
Text
Resource Subtype
Proceedings
Rights Statement
Rights URI