Title:
Influence of Action Observation Based Intervention on Motor Behavior in Simulated Upper Extremity Prosthesis Use

dc.contributor.author Thach, Scott en_US
dc.contributor.corporatename School of Applied Physiology
dc.contributor.corporatename College of Sciences
dc.contributor.corporatename Georgia Institute of Technology. School of Applied Physiology en_US
dc.contributor.corporatename Georgia Institute of Technology. Cognitive Motor Control Laboratory en_US
dc.contributor.corporatename College of Sciences
dc.contributor.corporatename School of Biological Sciences
dc.date.accessioned 2013-05-21T14:44:11Z
dc.date.available 2013-05-21T14:44:11Z
dc.date.issued 2013-04-19
dc.description MSPO Capstone research presented at the 3rd Annual Prosthetic Orthotic Research Symposium, April 19, 2013 12:30 pm – 05:30 pm, Student Center Theater. en_US
dc.description Runtime: 14:57 minutes. en_US
dc.description.abstract A person who has gone through a major upper extremity amputation has lost fine, coordinated movements of the hand, tactile sensation, and proprioceptive feedback. While a prosthesis offers some return to a person's previous level of independence or function, training is necessary for a user to develop proficiency. Previous research has shown potential benefit to prosthesis users imitating a limb similar to their own. These users are able to engage in normal planning mechanisms with limb matching observation training, but engage in atypical planning when imitating an intact person. The purpose of this study was to investigate motor behavior differences with intact subjects fitted with a Fictive Amputee Model System (FAMS) device, which simulates a trans radial body powered prosthesis. Subjects are placed in one of two different protocols to investigate differences between interventions: limb matched or limb mismatched action observation training. We hypothesize that if limb matching elicits the typical motor planning and limb mismatching creates atypical motor planning, then users in the limb matching group will have decreased time in performing a task, quicker joint coordination adaptation, and greater task performance accuracy. Seventeen right-handed, healthy, intact adults were tested for changes in motor behavior over a five day period. Data collections were conducted on day one and day five of the study, while training sessions occurred on days two through four. Each data collection session utilized an electronic stylus pen to measure task performance and electrogoniometers measuring joint kinematics of the wrist, forearm, elbow, and shoulder. Analysis of time duration between groups showed that subjects in the matched limb group performed the task slower than the mismatched limb group. The groups also displayed differences in joint coordination. There are no significant differences observed in task performance accuracy, yet there are observable differences in patterns of error across groups. The results from this study propose that matched limb observation training may be beneficial in promoting faster kinematic patterns in users of prostheses, thus quicker joint coordination adaptation. This may be reflected in greater care in performing motor tasks, as matched limb training prompted slower movement. Further studies will investigate metrics on task performance to show if there were benefits in matched limb observation training. The results from the study provide insight into how limb matched action observation based training may be beneficial to upper extremity prosthesis users. en_US
dc.description.advisor Mentor: Lewis Wheaton en_US
dc.format.extent 14:57 minutes
dc.identifier.uri http://hdl.handle.net/1853/46962
dc.language.iso en_US en_US
dc.publisher Georgia Institute of Technology en_US
dc.relation.ispartofseries Prosthetic Orthotic Research Symposium ; 2013
dc.subject Upper extremity prosthetics en_US
dc.subject Fictive amputee model system en_US
dc.subject Limb matched action observation based training en_US
dc.title Influence of Action Observation Based Intervention on Motor Behavior in Simulated Upper Extremity Prosthesis Use en_US
dc.type Moving Image
dc.type.genre Masters Project
dc.type.genre Presentation
dspace.entity.type Publication
local.contributor.corporatename College of Sciences
local.contributor.corporatename School of Biological Sciences
local.relation.ispartofseries Master's Projects
local.relation.ispartofseries Prosthetics and Orthotics Graduate Progam
relation.isOrgUnitOfPublication 85042be6-2d68-4e07-b384-e1f908fae48a
relation.isOrgUnitOfPublication c8b3bd08-9989-40d3-afe3-e0ad8d5c72b5
relation.isSeriesOfPublication 09b1c264-93da-4a60-8e57-4eecff715bc6
relation.isSeriesOfPublication a5eb8fcf-f60d-47ce-ba10-668ed019b518
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
thach.mp4
Size:
41.42 MB
Format:
MP4 Video file
Description:
Download Video
No Thumbnail Available
Name:
thach_videostream.html
Size:
985 B
Format:
Hypertext Markup Language
Description:
Streaming Video
Collections