Title:
Novel methods for the separation and intervention of Salmonella typhimurium for food safety applications

dc.contributor.advisor Hesketh, Peter J.
dc.contributor.author Pizzo, Amber
dc.contributor.committeeMember Xu, Jie
dc.contributor.committeeMember Sulchek, Todd
dc.contributor.department Mechanical Engineering
dc.date.accessioned 2013-09-20T13:26:45Z
dc.date.available 2013-09-20T13:26:45Z
dc.date.created 2013-08
dc.date.issued 2013-06-25
dc.date.submitted August 2013
dc.date.updated 2013-09-20T13:26:45Z
dc.description.abstract This work begins with chemotaxis studies involving Salmonella typhimurium. Known chemical attractants (ribose, aspartic acid, etc.) and repellents (nickel chloride, sodium acetate, etc.) were tested to direct bacteria swimming patterns. It was found that high concentrations of both attractant and repellent, approximately 10% chemical in deionized (DI) water, yielded better separation results than lower concentrations, such as 1% and .1% chemical in DI water. Utilizing these attractants or repellents appropriately can allow live bacteria to be directed in a desired manner in a microfluidic device, while dead bacteria, which yield no response, can be separated into a waste reservoir. Another important aspect of bacteria separation is preconcentration, or the process of concentrating bacteria in a usable amount of liquid for further analysis in a microfluidic device. This study introduces a method of capturing Salmonella typhimurium through the use of magnetic nanoparticles (MNPs) without functionalizing them with antibody or amine coatings. Based on the work by Deng et al., MNPs were prepared in various ways to alter their diameter and surface characteristics to achieve optimal bacteria capture efficiency. A capture efficiency of approximately 94% has been achieved by altering chemical quantities in the MNP fabrication process. A macro-scale flow cell prototype was designed and characterized in order to ‘clean’ large volumes of buffer and separate the bacteria-MNP aggregates through the use of a magnetic field. Finally, intervention of bacteria is a significant topic in food safety applications. This study utilizes Fe (III) to inhibit bacteria growth. This chemical was used in the presence of Salmonella, E. coli, Staphylococcus, and Pseudomonas. Further experiments were conducted with raw chicken and lettuce contaminated with Salmonella typhimurium. Using as little as .005M Fe III in DI water, up to 5 orders of magnitude reduction in bacteria growth was seen on test plates as compared to control plates.
dc.description.degree M.S.
dc.format.mimetype application/pdf
dc.identifier.uri http://hdl.handle.net/1853/49086
dc.language.iso en_US
dc.publisher Georgia Institute of Technology
dc.subject Salmonella
dc.subject Chemotaxis
dc.subject Preconcentration
dc.subject Magnetic nanoparticle
dc.subject Intervention
dc.subject.lcsh Repellents
dc.subject.lcsh Bacteria
dc.subject.lcsh Food contamination
dc.title Novel methods for the separation and intervention of Salmonella typhimurium for food safety applications
dc.type Text
dc.type.genre Thesis
dspace.entity.type Publication
local.contributor.advisor Hesketh, Peter J.
local.contributor.corporatename George W. Woodruff School of Mechanical Engineering
local.contributor.corporatename College of Engineering
relation.isAdvisorOfPublication 0d9e4b1a-9eee-46d7-9a35-9418225d923b
relation.isOrgUnitOfPublication c01ff908-c25f-439b-bf10-a074ed886bb7
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
thesis.degree.level Masters
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
PIZZO-THESIS-2013.pdf
Size:
2.7 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
3.86 KB
Format:
Plain Text
Description: