Title:
Subsurface Sediment Mobilization on Mars: Insights Provided by Orbital Remote Sensing Datasets

dc.contributor.advisor Wray, James J.
dc.contributor.author Dapremont, Angela M.
dc.contributor.department Earth and Atmospheric Sciences
dc.date.accessioned 2023-01-10T16:08:20Z
dc.date.available 2023-01-10T16:08:20Z
dc.date.created 2021-12
dc.date.issued 2021-08-24
dc.date.submitted December 2021
dc.date.updated 2023-01-10T16:08:20Z
dc.description.abstract Mud volcanism, a specific type of subsurface sediment mobilization process known to occur on Earth, has been suggested to explain the formation of morphologically diverse edifices across the surface of Mars. Previous studies have provided valuable knowledge about the morphometry, morphology, and geologic setting of putative Martian mud volcanoes. However, major knowledge gaps pertaining to the compositional characteristics of these features remain. This dissertation primarily focuses on the use of multiple orbital remote sensing datasets to investigate the mineralogical characteristics of putative Martian mud volcanoes. The validity of the mud volcanism hypothesis for pitted cones in a northern hemisphere study region of Mars is assessed, and the mineralogy of postulated Martian mud volcanoes is examined on a global scale through the use of some of the highest resolution orbital datasets currently available to study surface features on Mars. This dissertation also provides supplemental knowledge to these compositional analyses through the incorporation of an expanded morphometric dataset, a spatial analysis methodology, and the first application of an analytical modeling technique to the study of proposed mud volcanoes on Mars. Microbial activity has been documented at both onshore and offshore mud volcanism system sites on Earth. Therefore, the possibility that this geologic process once operated on the surface of Mars is intriguing given the astrobiological potential of the associated locations, as well as the ability to study sediments that would otherwise be inaccessible and possibly represent life in the deep biosphere of a second terrestrial planet in the Solar System. The study of this geologic process on Mars is also worthwhile due to implications for Martian climate, comparative planetology, and future landed mission exploration of the Martian surface.
dc.description.degree Ph.D.
dc.format.mimetype application/pdf
dc.identifier.uri http://hdl.handle.net/1853/70011
dc.language.iso en_US
dc.publisher Georgia Institute of Technology
dc.subject Mars
dc.subject volcanism
dc.title Subsurface Sediment Mobilization on Mars: Insights Provided by Orbital Remote Sensing Datasets
dc.type Text
dc.type.genre Dissertation
dspace.entity.type Publication
local.contributor.advisor Wray, James J.
local.contributor.corporatename School of Earth and Atmospheric Sciences
local.contributor.corporatename College of Sciences
relation.isAdvisorOfPublication 8a29d7ec-0d6a-4d24-bb9c-e8d36c5f199d
relation.isOrgUnitOfPublication b3e45057-a6e8-4c24-aaaa-fb00c911603e
relation.isOrgUnitOfPublication 85042be6-2d68-4e07-b384-e1f908fae48a
thesis.degree.level Doctoral
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
DAPREMONT-DISSERTATION-2021.pdf
Size:
151.11 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
3.87 KB
Format:
Plain Text
Description: