Title:
A methodology for dynamic sizing of electric power generation and distribution architectures

dc.contributor.advisor Mavris, Dimitri N.
dc.contributor.author Cinar, Gokcin
dc.contributor.committeeMember Schrage, Daniel P.
dc.contributor.committeeMember Garcia, Elena
dc.contributor.committeeMember Patnaik, Soumya S.
dc.contributor.committeeMember Nairus, John G.
dc.contributor.department Aerospace Engineering
dc.date.accessioned 2019-01-16T17:23:06Z
dc.date.available 2019-01-16T17:23:06Z
dc.date.created 2018-12
dc.date.issued 2018-11-01
dc.date.submitted December 2018
dc.date.updated 2019-01-16T17:23:06Z
dc.description.abstract Electric and hybrid electric aircraft pose a significant architecture challenge, as these concepts not only deal with considerably high electrical loads, but also are extremely weight-sensitive. Ideally, a design space exploration should be conducted for each aircraft design including the transient electric propulsion and generation subsystem models for different propulsion architectures. However, such transient and detailed models require significantly small time steps (generally in the order of microseconds) during simulations, compared to the time steps required for aircraft mission analysis (generally in the order of minutes). Hence, the inclusion of such models bring enormous computational burden to the early design phases, and therefore are usually neglected in the aircraft conceptual design stage. Combined with the lack of historical data, the uncertainty in the design and performance estimation of these subsystems can have a cascading impact on the vehicle design and mission performance, which results in non-optimal designs with weight and performance penalties. The over-arching objective of this thesis is to develop a methodology to perform the sizing, integration and performance evaluation of electric power generation and distribution subsystems (EPGDS) and architectures within electric and hybrid electric aircraft concepts. To this end, this dissertation presents the creation of a novel methodological framework, called Electric Propulsion Sizing and Synthesis (E-PASS), which integrates EPGDS considerations into the aircraft sizing and synthesis process to enable quantitative and adequate comparisons between different types of electric and hybrid electric propulsion architectures. E-PASS has three main capabilities to overcome the aforementioned limitations. First, the traditional sizing and synthesis approach is modified to incorporate a modular weight estimation technique along with an energy-based mission analysis approach which stems from the conservation laws. The new, generalized approach enables the design and performance evaluation of any vehicle configuration, including the electric and hybrid electric aircraft. Second, a power split schedule optimization algorithm is wrapped around the sizing and synthesis capability to ensure that the candidate architectures at their optimum performance. Third, the dynamic nature of the EPGDS is taken into account by developing bi-level, physics-based and parametric models in addition to the adaptive step sizing capability which enables performing transient analysis at the conceptual design stage without sacrificing valuable computational resources. As a result, the transient analysis are performed only when required so that the knowledge about the subsystem design is maximized while minimizing the computational burden. Consequently, E-PASS incorporates these elements and provides a capability to integrate subsystem performance and dynamics of novel architectures to the aircraft sizing process at early design phases, enabling adequate comparisons between competing architectures.
dc.description.degree Ph.D.
dc.format.mimetype application/pdf
dc.identifier.uri http://hdl.handle.net/1853/60754
dc.language.iso en_US
dc.publisher Georgia Institute of Technology
dc.subject Aircraft design
dc.subject Electric propulsion
dc.subject Hybrid propulsion
dc.subject Electric aircraft
dc.subject Hybrid aircraft
dc.subject Subsystem design
dc.subject Subsystem architecture
dc.subject Transient analysis
dc.subject Sizing and synthesis
dc.subject Power management optimization
dc.title A methodology for dynamic sizing of electric power generation and distribution architectures
dc.type Text
dc.type.genre Dissertation
dspace.entity.type Publication
local.contributor.advisor Mavris, Dimitri N.
local.contributor.corporatename Daniel Guggenheim School of Aerospace Engineering
local.contributor.corporatename Aerospace Systems Design Laboratory (ASDL)
local.contributor.corporatename College of Engineering
local.relation.ispartofseries Doctor of Philosophy with a Major in Aerospace Engineering
relation.isAdvisorOfPublication d355c865-c3df-4bfe-8328-24541ea04f62
relation.isOrgUnitOfPublication a348b767-ea7e-4789-af1f-1f1d5925fb65
relation.isOrgUnitOfPublication a8736075-ffb0-4c28-aa40-2160181ead8c
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
relation.isSeriesOfPublication f6a932db-1cde-43b5-bcab-bf573da55ed6
thesis.degree.level Doctoral
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
CINAR-DISSERTATION-2018.pdf
Size:
9.14 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
3.86 KB
Format:
Plain Text
Description: