Title:
Microstructural optimization of solid-state sintered silicon carbide

Thumbnail Image
Author(s)
Vargas-Gonzalez, Lionel Ruben
Authors
Advisor(s)
Speyer, Robert F.
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
In this work, the development of theoretically-dense, clean grain boundary, high hardness solid-state sintered silicon carbide (SiC) armor was pursued. Boron carbide and graphite (added as phenolic resin to ensure the carbon is finely dispersed throughout the microstructure) were used as sintering aids. SiC batches between 0.25-4.00 wt.% carbon were mixed and spray dried. Cylindrical pellets were pressed at 13.7 MPa, cold-isostatically pressed (CIP) at 344 MPa, sintered under varying sintering soaking temperatures and heating rates, and varying post hot-isostatic pressing (HIP) parameters. Carbon additive amounts between 2.0-2.5 wt.% (based on the resin source), a 0.36 wt.% B4C addition, and a 2050°C sintering soak yielded parts with high sintering densities (~95.5-96.5%) and a fine, equiaxed microstructure (d50 = 2.525 µm). A slow ramp rate (10°C/min) prevented any occurrence of abnormal grain growth. Post-HIPing at 1900°C removed the remaining closed porosity to yield a theoretically-dense part (3.175 g/cm3, according to rule of mixtures). These parts exhibited higher density and finer microstructure than a commercially-available sintered SiC from Saint-Gobain (Hexoloy Enhanced, 3.153 g/cm3 and d50 = 4.837 µm). Due to the optimized microstructure, Verco SiC parts exhibited the highest Vickers (2628.30 ± 44.13 kg/mm2) and Knoop (2098.50 ± 24.8 kg/mm2) hardness values of any SiC ceramic, and values equal to those of the "gold standard" hot-pressed boron carbide (PAD-B4C). While the fracture toughness of hot-pressed SiC materials (~4.5 MPa m1/2) are almost double that of Verco SiC (2.4 MPa m1/2), Verco SiC is a better performing ballistic product, implying that the higher hardness of the theoretically-dense, clean-grain boundary, fine-grained SiC is the defining mechanical property for optimization of ballistic behavior.
Sponsor
Date Issued
2009-08-11
Extent
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI