Title:
Investigation of Adjoint Based Shape Optimization Techniques in NASCART-GT using Automatic Reverse Differentiation

dc.contributor.author Verma, Siddhartha
dc.contributor.department Aerospace Engineering
dc.date.accessioned 2009-06-09T13:14:44Z
dc.date.available 2009-06-09T13:14:44Z
dc.date.issued 2009-05-04
dc.description.abstract Automated shape optimization involves making suitable modifications to a geometry that can lead to significant improvements in aerodynamic performance. Currently available mid-fdelity Aerodynamic Optimizers cannot be utilized in the late stages of the design process for performing minor, but consequential, tweaks in geometry. Automated shape optimization involves making suitable modifications to a geometry that can lead to significant improvements in aerodynamic performance. Currently available mid-fidelity Aerodynamic Optimizers cannot be utilized in the late stages of the design process for performing minor, but consequential, tweaks in geometry. High-fidelity shape optimization techniques are explored which, even though computationally demanding, are invaluable since they can account for realistic effects like turbulence and viscocity. The high computational costs associated with the optimization have been avoided by using an indirect optimization approach, which was used to dcouple the effect of the flow field variables on the gradients involved. The main challenge while performing the optimization was to maintain low sensitivity to the number of input design variables. This necessitated the use of Reverse Automatic differentiation tools to generate the gradient. All efforts have been made to keep computational costs to a minimum, thereby enabling hi-fidelity optimization to be used even in the initial design stages. A preliminary roadmap has been laid out for an initial implementation of optimization algorithms using the adjoint approach, into the high fidelity CFD code NASCART-GT.High-fidelity shape optimization techniques are explored which, even though computationally demanding, are invaluable since they can account for realistic effects like turbulence and viscocity. The high computational costs associated with the optimization have been avoided by using an indirect optimization approach, which was used to dcouple the effect of the flow field variables on the gradients involved. The main challenge while performing the optimization was to maintain low sensitivity to the number of input design variables. This necessitated the use of Reverse Automatic differentiation tools to generate the gradient. All efforts have been made to keep computational costs to a minimum, thereby enabling hi-fidelity optimization to be used even in the initial design stages. A preliminary roadmap has been laid out for an initial implementation of optimization algorithms using the adjoint approach, into the high fidelity CFD code NASCART-GT. en
dc.description.advisor Ruffin, Stephen - Faculty Mentor ; Feron, Eric - Committee Member/Second Reader ; Sankar, Lakshmi - Committee Member/Second Reader
dc.identifier.uri http://hdl.handle.net/1853/28292
dc.language.iso en_US en
dc.publisher Georgia Institute of Technology en
dc.subject Adjoint en
dc.subject Adjoint based en
dc.subject Shape optimization en
dc.subject NASCART en
dc.subject NASCART-GT en
dc.subject Automatic reverse differentiation en
dc.title Investigation of Adjoint Based Shape Optimization Techniques in NASCART-GT using Automatic Reverse Differentiation en
dc.type Text
dc.type.genre Undergraduate Thesis
dspace.entity.type Publication
local.contributor.corporatename Daniel Guggenheim School of Aerospace Engineering
local.contributor.corporatename College of Engineering
local.contributor.corporatename Undergraduate Research Opportunities Program
local.relation.ispartofseries Undergraduate Research Option Theses
relation.isOrgUnitOfPublication a348b767-ea7e-4789-af1f-1f1d5925fb65
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
relation.isOrgUnitOfPublication 0db885f5-939b-4de1-807b-f2ec73714200
relation.isSeriesOfPublication e1a827bd-cf25-4b83-ba24-70848b7036ac
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
Siddhartha_Verma_Undergraduate_Thesis.pdf
Size:
897.15 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.86 KB
Format:
Item-specific license agreed upon to submission
Description: