Title:
Surgical management of ischemic mitral regurgitation: an in-vitro investigation

dc.contributor.advisor Yoganathan, Ajit P.
dc.contributor.author Rabbah, Jean Pierre
dc.contributor.committeeMember Gleason, Rudolph
dc.contributor.committeeMember Gorman, Joseph H.
dc.contributor.committeeMember Guldberg, Robert E.
dc.contributor.committeeMember Taylor, Robert
dc.contributor.department Biomedical Engineering (Joint GT/Emory Department)
dc.date.accessioned 2015-06-08T18:10:22Z
dc.date.available 2015-06-09T05:30:07Z
dc.date.created 2014-05
dc.date.issued 2014-02-05
dc.date.submitted May 2014
dc.date.updated 2015-06-08T18:10:22Z
dc.description.abstract Owing to its complex structure and dynamic loading, surgical repair of the heart’s mitral valve poses a significant clinical burden. Specifically, repair of ischemic mitral regurgitation, which is caused by the geometric disruption of the mitral apparatus in the setting of ventricular dysfunction, results in poor long-term patient survival. Clinical data have shown that the preferred surgical treatment, restrictive mitral annuloplasty, may result in 15-30% early (< 6 months) recurrence of mitral regurgitation; this may exceed 70% after five years. Studies have suggested that isolated annuloplasty may not be a comprehensive repair suitable for all patients because ischemic pathology is multi-factorial and results in variable ventricular and valvular geometric distortions. Therefore, in this thesis, a new surgical planning paradigm was developed through three specific aims. In specific aim 1, in collaboration with Philips Healthcare, a novel tool to more accurately and quantitatively assess mitral valve insufficiency was developed and rigorously validated using the Georgia Tech Left Heart Simulator. This tool was found to be more efficacious and robust than the current clinical standard. Ultimately, this improved diagnostics may better inform surgical indication, specifically, to identify patients that may not benefit from simple ring annuloplasty. In specific aim 2, targeted adjunctive surgical repair for such patients were investigated. Anterior leaflet augmentation and basal papillary muscle relocation were observed to restore mitral valve function while reducing the leaflet-subvalvular tethering associated with ischemic left ventricular remodeling. These efficacious repairs were found to be robust to variability in surgical implementation, which may encourage more widespread clinical adaptation. Finally, in specific aim 3, an integrative experimental framework was developed to promote pre-operative patient specific evaluation of mitral valve surgical repair using novel computational methods. The experimental framework combined high-resolution state of the art imaging with clinical imaging to provide the most realistic anatomical reconstructions possible. For the first time, ventricular flow fields through and proximal to a native mitral valve were acquired using stereoscopic particle image velocimetry. These data were combined with measurements of leaflet dynamics and subvalvular forces to create a comprehensive database for the rigorous validation of mitral valve finite element and fluid-structure interaction models. Collectively, these studies comprise a surgical planning paradigm that may better inform repair of mitral valve insufficiency.
dc.description.degree Ph.D.
dc.embargo.terms 2015-05-01
dc.format.mimetype application/pdf
dc.identifier.uri http://hdl.handle.net/1853/53412
dc.language.iso en_US
dc.publisher Georgia Institute of Technology
dc.subject Mitral valve
dc.subject Mechanics
dc.title Surgical management of ischemic mitral regurgitation: an in-vitro investigation
dc.type Text
dc.type.genre Dissertation
dspace.entity.type Publication
local.contributor.advisor Yoganathan, Ajit P.
local.contributor.corporatename Wallace H. Coulter Department of Biomedical Engineering
local.contributor.corporatename College of Engineering
relation.isAdvisorOfPublication 6a910742-4bed-4ba6-b03d-f92e4c915a00
relation.isOrgUnitOfPublication da59be3c-3d0a-41da-91b9-ebe2ecc83b66
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
thesis.degree.level Doctoral
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
RABBAH-DISSERTATION-2014.pdf
Size:
12.68 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 3 of 3
No Thumbnail Available
Name:
LICENSE_2.txt
Size:
3.87 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE_1.txt
Size:
3.87 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
3.87 KB
Format:
Plain Text
Description: