Title:
A Better World for All: Understanding and Promoting Micro-finance Activities in Kiva.org
A Better World for All: Understanding and Promoting Micro-finance Activities in Kiva.org
Author(s)
Choo, Jaegul
Lee, Changhyun
Lee, Daniel
Zha, Hongyuan
Park, Haesun
Lee, Changhyun
Lee, Daniel
Zha, Hongyuan
Park, Haesun
Advisor(s)
Editor(s)
Collections
Supplementary to
Permanent Link
Abstract
Micro-finance organizations provide non-profit loaning opportunities to eradicate poverty by financially equipping impoverished, yet skilled entrepreneurs who are in desperate
need of an institution that lends to those who have little. Kiva.org, a widely-used crowd-funded micro-financial
service, provides researchers with an extensive amount of
openly downloadable data containing a wealthy set of heterogeneous information regarding micro-financial transactions. Our objective is to identify the key factors that encourage people to make micro-financing donations, and ultimately, to keep them actively involved. In our contribution
to further promote a healthy micro-finance ecosystem, we detail our personalized loan recommendation system which
we formulate as a supervised learning problem where we try to predict how likely a given lender will fund a new loan.
We construct the features for each data item by utilizing
the available connectivity relationships in order to integrate all the available Kiva data types. For those lenders with no
such relationships, e.g., first-time lenders, we propose a novel method of feature construction by computing joint nonnegative matrix factorization. By using a gradient boosting tree,
a state-of-the-art prediction model, we are able to achieve up to 0.92 AUC (area under the curve) value, which shows that our work is ready for use in practice. Finally, we reveal various interesting knowledge about lenders’ social behaviors in
micro-finance activities.
Sponsor
Date Issued
2013
Extent
Resource Type
Text
Resource Subtype
Technical Report