Title:
Changing Our Perspective to Increase Our Understanding of Basic Aquatic Ecosystem Function

dc.contributor.author Flite, Oscar P. en_US
dc.contributor.author Rosenquist, Shawn E. en_US
dc.contributor.author Moak, Jason W. en_US
dc.contributor.corporatename Southeastern Natural Sciences Academy en_US
dc.date.accessioned 2014-03-26T20:15:35Z
dc.date.available 2014-03-26T20:15:35Z
dc.date.issued 2013-04
dc.description Proceedings of the 2013 Georgia Water Resources Conference, April 10-11, 2013, Athens, Georgia. en_US
dc.description.abstract Aquatic ecosystems are dynamic mixtures of physical, chemical, biological, geological, and meteorological elements. Understanding how that mixture produces the observed water quality at a given location is one of our greatest challenges. To a large degree, our understanding has been limited by the availability of tools and by our research approach. Advances within the last two decades have allowed us to go beyond synoptic sampling (data collection from many sites without regard to travel time) to multiple site, continuous sampling efforts (high frequency data from multiple fixed locations). While those data are important for assessing regulatory water quality, fixed position sampling (Eulerian perspective) falls short of providing a true understanding of aquatic ecosystem function because of the significant spatiotemporal gaps between data collection sites. Continuous data from multiple locations increases data resolution but connecting those data within the context of advective transport requires simulation; this results in far more simulated than measured data. Continuous measurements while following the same parcel of water as it is advectively transported (Lagrangian perspective) is another important approach to understanding aquatic ecosystem function. This approach allows for better spatiotemporal resolution and can lead to better understanding of ecosystem function. The Lagrangian perspective is however limited by the costs and time associated with conducting this type of data collection effort and data sets may be limited in the range of seasonal and stochastic conditions. For six years, Southeastern Natural Sciences Academy has been collecting water quality data with Eulerian data collection methods throughout the Middle and Lower Savannah River Basins. In June 2012, we launched our first Lagrangian research expedition along 233 kilometers (145 miles) of the Middle Savannah River Basin. The goal of this paper is to discuss some of the differences between our Eulerian and Lagrangian data sets and the challenges that lie ahead. en_US
dc.description.sponsorship Sponsored by: Georgia Environmental Protection Division; U.S. Department of Agriculture, Natural Resources Conservation Service; Georgia Institute of Technology, Georgia Water Resources Institute; The University of Georgia, Water Resources Faculty. en_US
dc.description.statementofresponsibility This book was published by Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, Georgia 30602-2152. The views and statements advanced in this publication are solely those of the authors and do not represent official views o en_US
dc.identifier.uri http://hdl.handle.net/1853/51484
dc.language.iso en_US en_US
dc.publisher Georgia Institute of Technology en_US
dc.relation.ispartofseries GWRI2013. Ecological: Function, Restoration, Monitoring en_US
dc.subject Water resources management en_US
dc.subject Ecological functions en_US
dc.subject Aquatic ecosystems en_US
dc.title Changing Our Perspective to Increase Our Understanding of Basic Aquatic Ecosystem Function en_US
dc.type Text
dc.type.genre Proceedings
dspace.entity.type Publication
local.contributor.corporatename Georgia Water Resources Institute
local.contributor.corporatename School of Civil and Environmental Engineering
local.contributor.corporatename College of Engineering
local.relation.ispartofseries Georgia Water Resources Conference
relation.isOrgUnitOfPublication 8873b408-9aff-48cc-ae3c-a3d1daf89a98
relation.isOrgUnitOfPublication 88639fad-d3ae-4867-9e7a-7c9e6d2ecc7c
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
relation.isSeriesOfPublication e0bfffc9-c85a-4095-b626-c25ee130a2f3
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
3.6.1_Flite.pdf
Size:
10.8 KB
Format:
Adobe Portable Document Format
Description: