Title:
The Investigation of Carboxyl Groups of Pulp Fibers during Kraft Pulping, Alkaline Peroxide Bleaching, and TEMPO-mediated Oxidation

Thumbnail Image
Author(s)
Dang, Zheng
Authors
Advisor(s)
Ragauskas, Arthur J.
Hsieh, Jeffery S.
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
Over the past 10 years, growing concerns over the modification of fibers have led researchers to focus on enriching the carboxyl group content of fibers by chemical oxidation and topochemical grafting. The current series of experiments continues this line of research by investigating the carboxyl group content of fibers during kraft pulping, alkaline peroxide bleaching, and 2,2,6,6-tetrametyl-1-piperidinyloxy radical (TEMPO)-KBr-NaClO oxidation system. The first experiment characterizes changes in the carboxyl group content of fibers for two sets of kraft pulps: 1) conventional laboratory cooked loblolly pine kraft pulps, and 2) conventional pulping (CK) versus Lo-Solids pulping (LS) pulps. The results indicate that effective alkali (EA), temperature, and H-factor are the primary factors controlling fiber charge during kraft pulping. Another set of kraft pulps distinguished by conventional pulping and Lo-Solids pulping were investigated to determine the effect of H-factor and pulping protocol on fiber charge. The second experiment examines the influence of alkaline peroxide treatment on elementally chlorine-free (ECF) bleached softwood kraft pulp. The effect of increased fiber charge on refining, cationic starch adsorption, and hornification was examined. The final experiment investigates the effect of TEMPO-mediated oxidation of an ECF bleached softwood kraft pulp on carboxyl group content, carbonyl group contents, degree of polymerization, and water retention value of fibers. The results show that TEMPO-mediated oxidation is useful in enriching the carboxyl and carbonyl groups to fibers, as well as enhancing the property of water adsorption of fibers. These findings suggest that: (1) kraft pulping process can be modified to obtain the target carboxyl group content, (2) terminal peroxide bleaching provides higher fiber charge which can save energy and chemical charge of subsequent refining and wet-end processes, respectively, as well as reduce hornification during drying, (3) TEMPO-mediated oxidation of fibers is capable of improving the properties of fibers, including fiber charge and water adsorption, and enhancing final paper strength.
Sponsor
Date Issued
2007-05-18
Extent
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI