Title:
The impact of on-site wastewater treatment systems on the nitrogen load and baseflow in urbanizing watersheds of Metropolitan Atlanta, Georgia

dc.contributor.author Oliver, C. en_US
dc.contributor.author Risse, L. Mark en_US
dc.contributor.author Radcliffe, David E. en_US
dc.contributor.author Habteselassie, M. en_US
dc.contributor.author Clarke, John S. en_US
dc.contributor.corporatename Geological Survey (U.S.) en_US
dc.contributor.corporatename University of Georgia. College of Engineering en_US
dc.contributor.corporatename University of Georgia. Dept. of Crop and Soil Sciences en_US
dc.date.accessioned 2013-07-25T22:20:32Z
dc.date.available 2013-07-25T22:20:32Z
dc.date.issued 2013-04
dc.description Proceedings of the 2013 Georgia Water Resources Conference, April 10-11, 2013, Athens, Georgia. en_US
dc.description.abstract On-site wastewater treatment systems (OWTSs) are widely used in the Southeastern United States for municipal wastewater treatment. As urban and suburban populations increase, the use of OWTSs is expected to further increase. This region heavily depends on surface waters for its water supply, therefore, the impact of OWTSs on surface water quality and quantity must be investigated. Conventional OWTSs can be potential sources of N pollution for groundwater and streams that can cause human health concerns and stimulate algal growth resulting in eutrophication. The overall goal of this project is to determine the impact of OWTSs on the N load and baseflow in urbanizing watersheds of Ocmulgee and Oconee River basins in Georgia. This paper presents preliminary results of the differences in the N load and baseflow as well as other water quality indicators such as electrical conductivity (EC) and chloride (Cl-) in streams of watersheds impacted by high (HD) and low density (LD) OWTSs. Synoptic samples and discharge measurements of 24 watersheds were taken 3 times per year in fall, spring, and summer under baseflow conditions. EC and Cl- concentrations were significantly higher in HD OWTS watersheds for all three sampling events. N concentrations were not statistically different between HD and LD watersheds for all three sampling events. Baseflow measurements in the fall and spring were not statistically different between HD and LD watersheds, but summer measurements were significantly higher in the HD watersheds. The results indicate the presence of OWTS effluent in streams of watersheds with HD OWTSs, while N analysis indicates a reduction in concentration through dilution and denitrification. However, increased baseflow in watersheds impacted by HD OWTSs results in an increase in total N load. Further analysis is needed to accurately determine and quantify the impact of OWTSs on water quality and quantity at the watershed-scale. en_US
dc.description.sponsorship Sponsored by: Georgia Environmental Protection Division; U.S. Department of Agriculture, Natural Resources Conservation Service; Georgia Institute of Technology, Georgia Water Resources Institute; The University of Georgia, Water Resources Faculty. en_US
dc.description.statementofresponsibility This book was published by Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, Georgia 30602-2152. The views and statements advanced in this publication are solely those of the authors and do not represent official views or policies of The University of Georgia, the Georgia Water Research Institute as authorized by the Water Research Institutes Authorization Act of 1990 (P.L. 101-307) or the other conference sponsors. en_US
dc.embargo.terms null en_US
dc.identifier.uri http://hdl.handle.net/1853/48558
dc.language.iso en_US en_US
dc.publisher Georgia Institute of Technology en_US
dc.relation.ispartofseries GWRI2013. Groundwater, water management and data en_US
dc.subject Water resources management en_US
dc.subject Municipal wastewater treatment en_US
dc.title The impact of on-site wastewater treatment systems on the nitrogen load and baseflow in urbanizing watersheds of Metropolitan Atlanta, Georgia en_US
dc.type Text
dc.type.genre Proceedings
dspace.entity.type Publication
local.contributor.corporatename Georgia Water Resources Institute
local.contributor.corporatename School of Civil and Environmental Engineering
local.contributor.corporatename College of Engineering
local.relation.ispartofseries Georgia Water Resources Conference
relation.isOrgUnitOfPublication 8873b408-9aff-48cc-ae3c-a3d1daf89a98
relation.isOrgUnitOfPublication 88639fad-d3ae-4867-9e7a-7c9e6d2ecc7c
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
relation.isSeriesOfPublication e0bfffc9-c85a-4095-b626-c25ee130a2f3
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
5.6.3_Oliver.pdf
Size:
278.47 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.13 KB
Format:
Item-specific license agreed upon to submission
Description: