Fouling characteristics of ceramic microfiltration and ultrafiltration membranes during surface water treatment

Thumbnail Image
Lee, SeungJin
Kim, Jae-Hong
Associated Organization(s)
Supplementary to
Ceramic membrane processes are a rapidly emerging technology for water treatment, yet virtually no information on the performance and fouling mechanisms is available to the industry. Ceramic microfiltration of model feed solutions and a synthetic river water was examined, and a systematic comparison with polymeric counterpart was performed. The results suggested that the models which have been applied to polymeric membranes agreed well with the ceramic membrane filtration data. The fouling was characterized by the initial pore blocking mechanism and transition to the cake filtration mechanism at a later phase. Cake resistance was dominant and readily removable by physical cleaning. The effects of solution chemistry including ionic strength, divalent ion concentration and pH on the flux behavior were comparatively evaluated for ceramic and polymeric ultrafiltration of synthetic water containing model natural organic matter. Experimental evaluations further included resistance-in-series model analysis, organic matter fouling visualization using quantum dots, batch adsorption test, and contact angle measurement, and provided a quantitative a quantitative comparison of fouling characteristics between ceramic and polymeric membranes. The results collectively suggested that the effects of solution chemistry on the fouling behavior with ceramic membranes were mostly similar with polymeric membranes in terms of trends, while the extents varied depending on water quality parameters. Less fouling tendency and better cleaning efficiency were observed with the ceramic membranes, which was a promising finding for ceramic membrane application to surface water treatment. The study further examined a coagulation-ceramic membrane process as a robust option for surface water treatment. The performance of the hybrid system was evaluated using selected surface waters by varying coagulation conditions and types of coagulants. Results suggested that ceramic membranes experienced relatively less fouling and had better cleaning efficiency than polymeric counterpart. The results of this study provide critical information to guide the industry practitioners, consultants, and regulatory agents considering early adoption of this new technology as well as fundamental knowledge upon which further in-depth studies can be built.
Date Issued
Resource Type
Resource Subtype
Rights Statement
Rights URI