Redox-active ligand-mediated radical coupling reactions at high-valent oxorhenium complexes: reactions relevant to water oxidation for artificial photosynthesis

Thumbnail Image
Lippert, Cameron A.
Soper, Jake D.
Associated Organization(s)
Organizational Unit
Supplementary to
The making and breaking of O-O bonds has implications ranging from artificial photosynthesis and water oxidation to the use of O₂ as a selective, green oxidant for transformations of small molecules. Oxidative generation of O₂ from coupling of two H₂O molecules remains challenging, and well defined systems that catalytically evolve O₂ are exceedingly rare. Recent theoretical studies have invoked metal oxyl radicals (L[subscript n]M=O*) containing a singly occupied M-O π-type orbital as precursors to O-O bond forming events in both biological and synthetic water oxidation catalysts. However, the lack of stable metal oxyl complexes makes it difficult to explore and understand this hypothesis. The activation of dioxygen (breaking of O-O bonds) to produce terminal metal oxos also remains a challenge. There is an inherent kinetic barrier to the spin-forbidden reactions of triplet dioxygen, and features that engender selective O₂ reduction are not easily transferable from system to system. The primary thrust of this thesis work has been to elaborate new methods to generate well-defined metal oxyl radicals for studies of their reactions in radical bond-forming reactions similar to the radical coupling hypothesis of water oxidation. A library of >20 5- and 6-coordinate high-valent oxorhenium complexes containing redox-inert and redox-active ligands has been prepared. The complexes containing redox-active ligands have shown the ability for ligand-mediated radical coupling reactions. Mechanistic studies of bimetallic O₂ homolysis (the microscopic reverse of water oxidation) and nitroxyl radical deoxygenation at five-coordinate oxorhenium(V) reveal that, in both net 2e⁻ reactions, coupling to a redox-active ligand lowers the kinetic barrier to the reaction by facilitating formation and stabilization of 1e⁻ oxidized intermediates. Coordinatively unsaturated high-valent oxorhenium complexes containing redox-active ligands direct bond-forming reactions towards the metal center. This is undesirable towards the goal of forming O-O bonds. To address this problem coordinatively saturated Re(V) and Re(VII) complexes were prepared. Oxidation of these species by chemical oxidants allowed for the isolation of "masked" oxyl species. These complexes showed reactivity towards Si and trityl radicals to produce new Si-O and C-O bonds, whereas their closed-shell congeners were inert. We have successfully developed a method for the preparation and isolation of "masked" oxyl radicals and shown their utility in ligand-mediated radical coupling reactions.
Date Issued
Resource Type
Resource Subtype
Rights Statement
Rights URI