Title:
The Amazon hydrometeorology: climatology, variability and links to changes in weather patterns

Thumbnail Image
Author(s)
Fernandes, Katia de Avila
Authors
Advisor(s)
Fu, Rong
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Series
Supplementary to
Abstract
Using ERA40 and independent observations, I assess how well Amazon surface water budget is estimated. ERA40 basin wide annual precipitation (P) agrees with observations showing an underestimation of 10%, whereas runoff (R) is underestimated by a larger margin (~25%). Observed residual of precipitation and runoff (P-R) is better estimated by ERA40 P-R than actual ET which includes soil moisture nudging. Nudging is necessary during the dry season to produce realistic ET and compensate for low soil moisture recharge during the wet season. Insufficient recharge may be caused by: underestimation of rainfall amount and intensity; a shallow root layer in the model that does not represent the deep soil water reservoir of the Amazonian forest. The physical links between changes in wet season onset and synoptic scale systems are investigated in the second part of my work. A delayed wet season onset is consistent with a decreasing number of cold air incursion (CAI) days in southern Amazon during 1979-2001. CAI variability in southern Amazon is related to SST in the tropical Pacific and Indian Oceans. The first mode of co-variability shows that during El Nio (La Nia) a strong (weak) subtropical jet stream over South America is related to decreased (increased) CAI days during SON. The second mode shows warm western Indian Ocean also related to strong subtropical jet stream. The absence a well defined subpolar jet stream, favors the northward displacement of transient waves into central South America, but shows little response in southern Amazon. CAI days reconstructed from the first and second modes do not present any significant trend in southern Amazon. CAI days reconstructed from the third mode of co-variability reproduces SON observed trend. This mode describes negative (positive) anomalies in CAI days associated with cold (warm) SST anomalies, anomalous wavetrain in the tropical Pacific and Walker Cell displacement that are unfavorable (favorable) to the incursion of CAI into southern Amazon. This mode's temporal evolution correlates with the Pacific Decadal Oscillation (PDO), suggesting that its recent gradual signal shift reflected on the interannual response of southern Pacific atmospheric patterns, hence on the behavior of transients propagation.
Sponsor
Date Issued
2009-07-27
Extent
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI