Title:
Technology Impact Forecasting for a High Speed Civil Transport

Thumbnail Image
Author(s)
Mavris, Dimitri N.
Kirby, Michelle Rene
Qiu, Songtao
Authors
Advisor(s)
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
This paper outlines a comprehensive, structured, and robust methodology for decision making in the early phases of aircraft design. The proposed approach is referred to as the Technology Identification, Evaluation, and Selection (TIES) method. The seven-step process provides the decision maker/designer with an ability to easily assess and trade-off the impact of various technologies in the absence of sophisticated, time-consuming mathematical formulations. The method also provides a framework where technically feasible alternatives can be identified with accuracy and speed. This goal is achieved through the use of various probabilistic methods, such as Response Surface Methodology and Monte Carlo Simulations. Furthermore, structured and systematic techniques are utilized to identify possible concepts and evaluation criteria by which comparisons could be made. This objective is achieved by employing the use of Morphological Matrices, Pugh Evaluation Matrices, and Multi-Attribute Decision Making methods. Through the implementation of each step, the best alternative for a given evaluation metric/criterion can be identified and assessed subjectively or objectively. This method was applied to a High Speed Civil Transport as a proof of concept investigation. The TIES method identified that a conventional (present day technology) configuration could not meet imposed FAR 36 Stage III sideline noise requirements. Through the infusion of new technologies, a technically feasible design space was created. The TIES method identified a single notional concept for further investigation. This concept has a composite wing structure, Circulation Control for low speed flight, Hybrid Laminar Flow Control for cruise, and advanced engines for reduced fuel consumption and noise emissions.
Sponsor
Date Issued
1998-09
Extent
610990 bytes
Resource Type
Text
Resource Subtype
Paper
Rights Statement
Rights URI