Title:
Multi-feature signature analysis for bearing condition monitoring using neural network methodology

dc.contributor.advisor Tavakoli, Massoud S.
dc.contributor.author Cease, Barry T. en_US
dc.contributor.department Mechanical Engineering en_US
dc.date.accessioned 2008-01-24T12:33:59Z
dc.date.available 2008-01-24T12:33:59Z
dc.date.issued 1992-12 en_US
dc.description.degree M.S. en_US
dc.identifier.bibid 364230 en_US
dc.identifier.uri http://hdl.handle.net/1853/19328
dc.publisher Georgia Institute of Technology en_US
dc.rights Access restricted to authorized Georgia Tech users only. en_US
dc.subject.lcsh Vibration en_US
dc.subject.lcsh Neural networks (Computer science) en_US
dc.subject.lcsh Artificial intelligence en_US
dc.title Multi-feature signature analysis for bearing condition monitoring using neural network methodology en_US
dc.type Text
dc.type.genre Thesis
dspace.entity.type Publication
local.contributor.corporatename George W. Woodruff School of Mechanical Engineering
local.contributor.corporatename College of Engineering
relation.isOrgUnitOfPublication c01ff908-c25f-439b-bf10-a074ed886bb7
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
cease_barry_t_199212_ms_364230.pdf
Size:
3.15 MB
Format:
Adobe Portable Document Format
Description: