A piezoresistive microcantilever array for chemical sensing applications

dc.contributor.advisor Hesketh, Peter J.
dc.contributor.author Choudhury, Arnab en_US
dc.contributor.committeeMember Bottomley, Lawrence
dc.contributor.committeeMember Degertekin,Levent
dc.contributor.committeeMember Hu, Zhiyu
dc.contributor.committeeMember Janata, Jiri
dc.contributor.committeeMember Zhang, Zhoumin
dc.contributor.department Mechanical Engineering en_US
dc.date.accessioned 2009-01-22T15:51:25Z
dc.date.available 2009-01-22T15:51:25Z
dc.date.issued 2007-11-14 en_US
dc.description.abstract Numerous applications in the present day ranging from testing humidity in air to detecting miniscule quantities of potentially hazardous chemical and biological agents in the air or water supplies require the development of chemical sensors capable of analyte detection with high sensitivity and selectively. Further, it has become desirable to create lab-on-chip systems that can detect multiple chemical agents and allow for sampling and testing of environments at locations distant from conventional laboratory facilities. Current challenges in this area include design, development and characterization of low detection limit sensors, development of low-noise readout methods, positive identification of analytes and, identification and reduction of the effect of various noise sources - both intrinsic and extrinsic to the sensor. The current work examines the performance limits of a 10-cantilever piezoresistive microcantilever array (PµCA) sensor. The microcantilevers measure analyte concentration in terms of the surface stress associated with analyte binding to the functionalized cantilever surface. The design, fabrication, characterization and testing of this measurement platform is presented. A novel aspect of the sensors developed is the use of n-type doping which increases the sensitivity of the device by one order of magnitude. In addition, design rules for surface stress-based chemical sensors have been developed. Extensive thermal characterization of the piezoresistive microcantilevers has been performed for DC and AC electrical excitation and values of heat transfer coefficient for the associated microscale phenomena are reported. Further, a method of low-noise measurement of cantilever resistance has been developed based on phase-sensitive detection techniques and this has been integrated with a multiplexing circuit to measure piezoresistance change in multiple cantilevers. Finally, the two novel techniques of chemical sensing- double-sided sensing and thermal array-based sensing have been investigated. These methods are presented as a means of extending the applicability and functionality of piezoresistive microcantilever sensors for chemical sensing. en_US
dc.description.degree Ph.D. en_US
dc.identifier.uri http://hdl.handle.net/1853/26623
dc.publisher Georgia Institute of Technology en_US
dc.subject Surface stress en_US
dc.subject Chemical sensor en_US
dc.subject Piezoresistive en_US
dc.subject Microcantilever en_US
dc.subject Sensor array en_US
dc.subject.lcsh Chemical detectors
dc.title A piezoresistive microcantilever array for chemical sensing applications en_US
dc.type Text
dc.type.genre Dissertation
dspace.entity.type Publication
local.contributor.advisor Hesketh, Peter J.
local.contributor.corporatename George W. Woodruff School of Mechanical Engineering
local.contributor.corporatename College of Engineering
relation.isAdvisorOfPublication 0d9e4b1a-9eee-46d7-9a35-9418225d923b
relation.isOrgUnitOfPublication c01ff908-c25f-439b-bf10-a074ed886bb7
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
19.51 MB
Adobe Portable Document Format