Title:
Extensibility of a Linear Rapid Robust Design Methodology

Thumbnail Image
Author(s)
Steinfeldt, Bradley A.
Braun, Robert D.
Authors
Advisor(s)
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Daniel Guggenheim School of Aerospace Engineering
The Daniel Guggenheim School of Aeronautics was established in 1931, with a name change in 1962 to the School of Aerospace Engineering
Series
Supplementary to
Abstract
The extensibility of a linear rapid robust design methodology is examined. This analysis is approached from a computational cost and accuracy perspective. The sensitivity of the solution's computational cost is examined by analysing effects such as the number of design variables, nonlinearity of the CAs, and nonlinearity of the response in addition to several potential complexity metrics. Relative to traditional robust design methods, the linear rapid robust design methodology scaled better with the size of the problem and had performance that exceeded the traditional techniques examined. The accuracy of applying a method with linear fundamentals to nonlinear problems was examined. It is observed that if the magnitude of nonlinearity is less than 1000 times that of the nominal linear response, the error associated with applying successive linearization will result in errors in the response less than 10% compared to the full nonlinear error.
Sponsor
Date Issued
2014-01
Extent
Resource Type
Text
Resource Subtype
Paper
Rights Statement
Unless otherwise noted, all materials are protected under U.S. Copyright Law and all rights are reserved