Title:
System Robustness Comparison of Advanced Space Launch Concepts

dc.contributor.author McCormick, David Jeremy en_US
dc.contributor.author Olds, John R. en_US
dc.contributor.corporatename American Institute of Aeronautics and Astronautics
dc.date.accessioned 2006-03-17T15:59:34Z
dc.date.available 2006-03-17T15:59:34Z
dc.date.issued 1998-10
dc.description 1998 Defense and Civil Space Programs Conference and Exhibit Huntsville, AL, October 28-30, 1998. en_US
dc.description.abstract This research proposes two methods to investigate the robustness differences between competing types of advanced space launch systems. These methods encompass two different phases of the advanced design process and are used to compare the relative advantages of two concepts in these phases. The first is a Monte Carlo simulation during the conceptual phase of design, where mold lines can be changed to account for uncertainty in weight assumptions. This tests the vehicle weight growth for a fixed mission. Here, the all-rocket single stage to orbit (SSTO) shows a more narrow distribution of dry weight, suggesting higher concept robustness. A study of vehicle mass ratio and mixture ratio combinations for both vehicles show the relative location of the results. The second phase represents the transition to detailed design. An optimization based on length determines the appropriate size for detailed design. This optimization takes into account uncertainties placed on both weight relationships and performance requirements. Both of these analyses utilize Crystal Ball Pro in conjunction with Microsoft Excel. This gives the technique compatibility with commonly used computer platforms. While the all-rocket SSTO does show an advantage in the area of system weight growth, several other factors are important in determining the viability of a reusable launch system, not the least of which is mission flexibility. Here the runway-operated RBCC SSTO has a distinct advantage.
dc.format.extent 156167 bytes
dc.format.mimetype application/pdf
dc.identifier.uri http://hdl.handle.net/1853/8420
dc.language.iso en_US
dc.publisher Georgia Institute of Technology en_US
dc.publisher.original American Institute of Aeronautics and Astronautics (AIAA)
dc.relation.ispartofseries SSDL ; AIAA 98-5209 en_US
dc.subject Robustness (Mathematics)
dc.subject Reusable launch vehicles
dc.subject Stochastic approaches
dc.subject Monte Carlo simulations
dc.title System Robustness Comparison of Advanced Space Launch Concepts en_US
dc.type Text
dc.type.genre Paper
dspace.entity.type Publication
local.contributor.corporatename Space Systems Design Laboratory (SSDL)
local.contributor.corporatename Daniel Guggenheim School of Aerospace Engineering
local.contributor.corporatename Daniel Guggenheim School of Aerospace Engineering
relation.isOrgUnitOfPublication dc68da3d-4cfe-4508-a4b0-35ba8de923fb
relation.isOrgUnitOfPublication a348b767-ea7e-4789-af1f-1f1d5925fb65
relation.isOrgUnitOfPublication a348b767-ea7e-4789-af1f-1f1d5925fb65
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
aiaa_98-5209.pdf
Size:
152.51 KB
Format:
Adobe Portable Document Format
Description: