Title:
High-density capacitor array fabrication on silicon substrates

Thumbnail Image
Author(s)
Sethi, Kanika
Authors
Advisor(s)
Tummala, Rao R.
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
System integration and miniaturization demands are driving integrated thin film capacitor technologies with ultra-high capacitance densities for power supply integrity and efficient power management. The emerging need for voltage conversion and noise-free power supply in bioelectronics and portable consumer products require ultra high-density capacitance of above 100 μF/cm2 with BDV 16-32 V ,independent capacitor array terminals and non-polar dielectrics. The aim of this research,therefore, is to explore a new silicon- compatible thin film nanoelectrode capacitor technology that can meet all these demands. The nanoelectrode capacitor paradigm has two unique advances. The first advance is to achieve ultra-high surface area thin film electrodes by sintering metallic particles directly on a silicon substrate at CMOS- compatible temperatures. The second advance of this study is to conformally- deposit medium permittivity dielectrics over such particulate nanoelectrodes using Atomic Layer Deposition (ALD) process. Thin film copper particle nanoelectrode with open-porous structure was achieved by choosing a suitable phosphate-ester dispersant, solvent and a sacrificial polymer for partial sintering of copper particles to provide a continuous high surface area electrode. Capacitors with conformal ALD alumina as the dielectric and Polyethylene dioxythiophene (PEDT) as the top electrode showed 30X enhancement in capacitance density for a 20-30 micron copper particulate bottom electrode and 150X enhancement of capacitance density for a 75 micron electrode. These samples were tested for their mechanical and electrical properties by using characterization techniques such as SEM, EDS, I-V and C-V plots. A capacitance density of 30 μF/cm2 was demonstrated using this approach. The technology is extensible to much higher capacitance densities with better porosity control, reduction in particle size and higher permittivity dielectrics.
Sponsor
Date Issued
2010-11-19
Extent
Resource Type
Text
Resource Subtype
Thesis
Rights Statement
Rights URI