Title:
Considerations for Operation of a Deep Space Nanosatellite Propulsion System

Thumbnail Image
Author(s)
Sorgenfrei, Matt
Stevenson, Terry
Lightsey, E. Glenn
Authors
Advisor(s)
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Daniel Guggenheim School of Aerospace Engineering
The Daniel Guggenheim School of Aeronautics was established in 1931, with a name change in 1962 to the School of Aerospace Engineering
Series
Supplementary to
Abstract
A distinguishing feature of deep space CubeSats is that they require some form of propulsion system, either for orbital maneuvering operations, spacecraft momentum management, or both. However, the comparatively short lifecycle for these missions, combined with the mass and volume restrictions that are attendant with the CubeSat form factor, make the integration of propulsion systems one of the highest-risk aspects of the entire mission. There are a limited number of facilities around the country that can support accurate testing of thruster systems that generate milli-Newtons of thrust, and the cost associated with handling and transportation of traditional propellants can be prohibitive for many CubeSat mission budgets. As a result, many deep space CubeSats are considering propulsion systems that are either at a fairly low technology readiness level or which will be integrated after a truncated test campaign. This paper will describe the propulsion system architecture selected for the BioSentinel mission, a six-unit CubeSat under development at NASA Ames Research Center. Bio-Sentinel requires a propulsion system to support detumble and momentum management operations, and this paper will discuss the integration of a third-party propulsion system with an Ames-built CubeSat, as well as the test campaign that is underway for both quality control and requirements verification purposes.
Sponsor
Date Issued
2016-02
Extent
Resource Type
Text
Resource Subtype
Paper
Rights Statement
Unless otherwise noted, all materials are protected under U.S. Copyright Law and all rights are reserved