Improved Decoding of Folded Reed-Solomon and Multiplicity Codes

Loading...
Thumbnail Image
Author(s)
Wootters, Mary
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Series
Series
Collections
Supplementary to:
Abstract
List-decoding is an important primitive in the theory of error correcting codes, and it has long been a goal to obtain explicit constructions of capacity-achieving, efficiently list-decodable codes. Folded Reed-Solomon Codes (Guruswami-Rudra 2008) and Multiplicity codes (Guruswami-Wang 2011, Kopparty 2012) are two such constructions. However, previous analysis of these codes could not guarantee optimal parameters. In particular, the “list-size” of these codes was only shown to be polynomial, while ideally it would be constant. Thus, over the past decade or so, there have been several modifications of these codes aimed at reducing the list size to constant. In this work, we show that in fact the list-sizes were constant all along, with no modifications required! Further, we use our result for univariate multiplicity codes to establish improved local list-decoding results for multivariate multiplicity codes. In this talk, I’ll define all the terms in the paragraph above (in particular, no prior knowledge of error correcting codes is necessary!), and sketch the proofs of the results mentioned above. Joint work with Swastik Kopparty, Noga Ron-Zewi, and Shubhangi Saraf.
Sponsor
Date
2018-10-01
Extent
51:56 minutes
Resource Type
Moving Image
Resource Subtype
Lecture
Rights Statement
Rights URI