Title:
Probing Defects and Electronic Processes on Gadolinia-doped Ceria Surfaces Using Electron Stimulated Desorption

dc.contributor.advisor Orlando, Thomas M.
dc.contributor.advisor Liu, Meilin
dc.contributor.author Chen, Haiyan en_US
dc.contributor.committeeMember First, Phillip
dc.contributor.committeeMember Janata, Jiri
dc.contributor.committeeMember Lyon, Andrew
dc.contributor.committeeMember Whetten, Robert
dc.contributor.department Chemistry and Biochemistry en_US
dc.date.accessioned 2006-06-09T17:50:24Z
dc.date.available 2006-06-09T17:50:24Z
dc.date.issued 2006-01-09 en_US
dc.description.abstract Probing Defects and Electronic Processes on Gadolinia-doped Ceria Surfaces Using Electron Stimulated Desorption Haiyan Chen 133 Pages Directed by Professor Thomas M. Orlando Polycrystalline gadolinia-doped ceria (GDC) has been widely investigated as a promising low temperature solid oxide fuel cell (SOFC) electrolyte and as part of composite electrodes. In this thesis, electron stimulated desorption (ESD) has been used to probe the defect related electronic properties of GDC surfaces and the interactions of water and molecular oxygen with these surfaces. In particular, the electron irradiation induced surface charging of GDC has been found to be dependent on the incident electron energy: negative at lower energy and positive at higher energy. Trapping of electrons and holes by the gadolinium aggregated, oxygen vacancy rich grain boundaries has been considered as the origin of surface charging. Depending on the sample treatment, there can be various defects, hydroxyl groups, chemically adsorbed water molecules, or water dimers on GDC surfaces. Water and molecular oxygen interact primarily with defect sites. Systematic investigations of electron stimulated O+ desorption have yielded activation energies relevant to oxygen vacancy production on ceria surfaces, and to surface positive charge dissipation related to ionic conduction of GDC. Highly efficient electron stimulated O+ desorption from GDC surfaces has been attributed to the lowered charge density on oxygen ions coordinated with oxygen vacancy clusters and thus may be used as a probe for surface defect types. Electron stimulated desorption of O2+ from GDC surfaces during molecular oxygen adsorption has shown the ability of ESD to detect chemically adsorbed O2. The velocity distributions of O2+ can be used to probe intermediate adsorption species such as O2, as well as the positive charge of the surface. Overall, this thesis has demonstrated that ESD can provide important information on the kinetics and dynamics of surface charging, charge transport, adsorption and reactions occurring at defective insulating metal oxides materials. The abilities to probe the defects and their roles in surface processes make ESD a valuable technique for surface chemistry and catalysis studies. en_US
dc.description.degree Ph.D. en_US
dc.format.extent 1781182 bytes
dc.format.mimetype application/pdf
dc.identifier.uri http://hdl.handle.net/1853/10427
dc.language.iso en_US
dc.publisher Georgia Institute of Technology en_US
dc.subject Oxygen vacancy en_US
dc.subject Surface charging
dc.title Probing Defects and Electronic Processes on Gadolinia-doped Ceria Surfaces Using Electron Stimulated Desorption en_US
dc.type Text
dc.type.genre Dissertation
dspace.entity.type Publication
local.contributor.advisor Liu, Meilin
local.contributor.advisor Orlando, Thomas M.
local.contributor.corporatename School of Chemistry and Biochemistry
local.contributor.corporatename College of Sciences
relation.isAdvisorOfPublication 30dd1bbc-edf1-406a-9183-d985863cbab3
relation.isAdvisorOfPublication fa8c3886-9348-4bc0-ba36-27aa4f9296f6
relation.isOrgUnitOfPublication f1725b93-3ab8-4c47-a4c3-3596c03d6f1e
relation.isOrgUnitOfPublication 85042be6-2d68-4e07-b384-e1f908fae48a
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
chen_haiyan_200605_phd.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format
Description: