Title:
Enabling collaborative behaviors among cubesats

Thumbnail Image
Author(s)
Browne, Daniel C.
Authors
Advisor(s)
Russell, Ryan P.
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
Future spacecraft missions are trending towards the use of distributed systems or fractionated spacecraft. Initiatives such as DARPA's System F6 are encouraging the satellite community to explore the realm of collaborative spacecraft teams in order to achieve lower cost, lower risk, and greater data value over the conventional monoliths in LEO today. Extensive research has been and is being conducted indicating the advantages of distributed spacecraft systems in terms of both capability and cost. Enabling collaborative behaviors among teams or formations of pico-satellites requires technology development in several subsystem areas including attitude determination and control subsystems, orbit determination and maintenance capabilities, as well as a means to maintain accurate knowledge of team members' position and attitude. All of these technology developments desire improvements (more specifically, decreases) in mass and power requirements in order to fit on pico-satellite platforms such as the CubeSat. In this thesis a solution for the last technology development area aforementioned is presented. Accurate knowledge of each spacecraft's state in a formation, beyond improving collision avoidance, provides a means to best schedule sensor data gathering, thereby increasing power budget efficiency. Our solution is composed of multiple software and hardware components. First, finely-tuned flight system software for the maintaining of state knowledge through equations of motion propagation is developed. Additional software, including an extended Kalman filter implementation, and commercially available hardware components provide a means for on-board determination of both orbit and attitude. Lastly, an inter-satellite communication message structure and protocol enable the updating of position and attitude, as required, among team members. This messaging structure additionally provides a means for payload sensor and telemetry data sharing. In order to satisfy the needs of many different missions, the software has the flexibility to vary the limits of accuracy on the knowledge of team member position, velocity, and attitude. Such flexibility provides power savings for simpler applications while still enabling missions with the need of finer accuracy knowledge of the distributed team's state. Simulation results are presented indicating the accuracy and efficiency of formation structure knowledge through incorporation of the described solution. More importantly, results indicate the collaborative module's ability to maintain formation knowledge within bounds prescribed by a user. Simulation has included hardware-in-the-loop setups utilizing an S-band transceiver. Two "satellites" (computers setup with S-band transceivers and running the software components of the collaborative module) are provided GPS inputs comparable to the outputs provided from commercial hardware; this partial hardware-in-the-loop setup demonstrates the overall capabilities of the collaborative module. Details on each component of the module are provided. Although the module is designed with the 3U CubeSat framework as the initial demonstration platform, it is easily extendable onto other small satellite platforms. By using this collaborative module as a base, future work can build upon it with attitude control, orbit or formation control, and additional capabilities with the end goal of achieving autonomous clusters of small spacecraft.
Sponsor
Date Issued
2011-07-08
Extent
Resource Type
Text
Resource Subtype
Thesis
Rights Statement
Rights URI