Title:
A Multi-Fidelity Approximation of the Active Subspace Method for Surrogate Models with High-Dimensional Inputs

Thumbnail Image
Author(s)
Mufti, Bilal
Chen, Mengzhen
Perron, Christian
Mavris, Dimitri N.
Authors
Advisor(s)
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Organizational Unit
Daniel Guggenheim School of Aerospace Engineering
The Daniel Guggenheim School of Aeronautics was established in 1931, with a name change in 1962 to the School of Aerospace Engineering
Series
Supplementary to
Abstract
Modern design problems routinely involve high-dimensional inputs and the active subspace has been recognized as a potential solution to this issue. However, the computational cost for collecting training data with high-fidelity simulations can be prohibitively expensive. This paper presents a multi-fidelity strategy where low-fidelity simulations are leveraged to extract an approximation of the high-fidelity active subspace. Both gradient-based and gradient-free active subspace methods are incorporated with the proposed multi-fidelity strategy and are compared with the equivalent single-fidelity method. To demonstrate the effectiveness of our proposed multi-fidelity strategy, the aerodynamic analysis of an airfoil and a wing are used to define two application problems. The effectiveness of the current approach is evaluated based on its prediction accuracy and training cost improvement. Results show that using a low-fidelity analysis to approximate the active subspace of high-fidelity data is a viable solution and can provide substantial computational savings, yet this is counterbalanced with slightly worse prediction accuracy.
Sponsor
Date Issued
2022-06
Extent
Resource Type
Text
Resource Subtype
Post-print
Rights Statement
Rights URI