Title:
Guidance, Navigation, and Control Technology System Trades for Mars Pinpoint Landing

Thumbnail Image
Author(s)
Steinfeldt, Bradley A.
Authors
Advisor(s)
Braun, Robert D.
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Daniel Guggenheim School of Aerospace Engineering
The Daniel Guggenheim School of Aeronautics was established in 1931, with a name change in 1962 to the School of Aerospace Engineering
Supplementary to
Abstract
Landing site selection is a compromise between safety concerns associated with the site’s terrain and scientific interest. Therefore, technologies enabling pinpoint landing (sub-100 m accuracies) on the surface of Mars are of interest to increase the number of accessible sites for in-situ research as well as allow placement of vehicles nearby prepositioned assets. A survey of various guidance, navigation, and control technologies that could allow pinpoint landing to occur at Mars has shown that negligible propellant mass fraction benefits are seen for reducing the three-sigma position dispersion at parachute deployment below approximately 3 km. Four different propulsive terminal descent guidance algorithms were analyzed with varying applicability to flight. Of these four, a near propellant optimal, analytic guidance law showed promise for the conceptual design of pinpoint landing vehicles. In addition, subsonic guided parachutes are shown to provide marginal performance benefits due to the timeline associated with Martian entries, and a low computational-cost, yet near fuel optimal propulsive terminal descent algorithm is identified. This investigation also demonstrates that navigation is a limiting technology for Mars pinpoint landing, with landed performance being largely affected by sensor accuracy.
Sponsor
Date Issued
2008-05-01
Extent
Resource Type
Text
Resource Subtype
Masters Project
Rights Statement
Unless otherwise noted, all materials are protected under U.S. Copyright Law and all rights are reserved