Title:
Graph Theoretic Connectivity Control of Mobile Robot Networks

Thumbnail Image
Author(s)
Zavlanos, Michael M.
Egerstedt, Magnus B.
Pappas, George J.
Authors
Advisor(s)
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
In this paper we provide a theoretical framework for controlling graph connectivity in mobile robot networks. We discuss proximity-based communication models composed of disk-based or uniformly fading signal strength communication links. A graph theoretic definition of connectivity is provided, as well as an equivalent definition based on algebraic graph theory, which employs the adjacency and Laplacian matrices of the graph and their spectral properties. Based on these results, we discuss centralized and distributed algorithms to maintain, increase, and control connectivity in mobile robot networks. The various approaches discussed in this paper range from convex optimization and subgradient descent algorithms, for the maximization of the algebraic connectivity of the network, to potential fields and hybrid systems that maintain communication links or control the network topology in a least restrictive manner. Common to these approaches is the use of mobility to control the topology of the underlying communication network. We discuss applications of connectivity control to multi-robot rendezvous, flocking and formation control, where so far, network connectivity has been considered an assumption.
Sponsor
Date Issued
2011
Extent
Resource Type
Text
Resource Subtype
Post-print
Proceedings
Rights Statement
Rights URI