An integrated approach to the design of supercavitating underwater vehicles

Thumbnail Image
Ahn, Seong Sik
Ruzzene, Massimo
Associated Organizations
Supplementary to
A supercavitating vehicle, a next-generation underwater vehicle capable of changing the paradigm of modern marine warfare, exploits supercavitation as a means to reduce drag and achieve extremely high submerged speeds. In supercavitating flows, a low-density gaseous cavity entirely envelops the vehicle and as a result the vehicle is in contact with liquid water only at its nose and partially over the afterbody. Hence, the vehicle experiences a substantially reduced skin drag and can achieve much higher speed than conventional vehicles. The development of a controllable and maneuvering supercavitating vehicle has been confronted with various challenging problems such as the potential instability of the vehicle, the unsteady nature of cavity dynamics, the complex and non-linear nature of the interaction between vehicle and cavity. Furthermore, major questions still need to be resolved regarding the basic configuration of the vehicle itself, including its control surfaces, the control system, and the cavity dynamics. In order to answer these fundamental questions, together with many similar ones, this dissertation develops an integrated simulation-based design tool to optimize the vehicle configuration subjected to operational design requirements, while predicting the complex coupled behavior of the vehicle for each design configuration. Particularly, this research attempts to include maneuvering flight as well as various operating trim conditions directly in the vehicle configurational optimization. This integrated approach provides significant improvement in performance in the preliminary design phase and indicates that trade-offs between various performance indexes are required due to their conflicting requirements. This dissertation also investigates trim conditions and dynamic characteristics of supercavitating vehicles through a full 6 DOF model. The influence of operating conditions, and cavity models and their memory effects on trim is analyzed and discussed. Unique characteristics are identified, e.g. the cavity memory effects introduce a favorable stabilizing effect by providing restoring fins and planing forces. Furthermore, this research investigates the flight envelope of a supercavitating vehicle, which is significantly different from that of a conventional vehicle due to different hydrodynamic coefficients as well as unique operational conditions.
Date Issued
Resource Type
Resource Subtype
Rights Statement
Rights URI