Title:
Nonreductive biomineralization of uranium(VI) as a result of microbial phosphatase activity

Thumbnail Image
Author(s)
Beazley, Melanie J.
Authors
Advisor(s)
Taillefert, Martial
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Series
Supplementary to
Abstract
Uranium contamination of soils and groundwater at Department of Energy facilities across the United States is a primary environmental concern and the development of effective remediation strategies is a major challenge. Bioremediation, or the use of microbial enzymatic activity to facilitate the remediation of a contaminant, offers a promising in situ approach that may be less invasive than traditional methods, such as pump and treat or excavation. This study demonstrates for the first time the successful biomineralization of uranium phosphate minerals as a result of microbial phosphatase activity at low pH in both aerobic and anaerobic conditions using pure cultures and soils from a contaminated waste site. Pure cultures of microorganisms isolated from soils of a low pH, high uranium- and nitrate-contaminated waste site, expressed constitutive phosphatase activity in response to an organophosphate addition in aerobic and anaerobic incubations. Sufficient phosphate was hydrolyzed to precipitate 73 to 95% total uranium as chernikovite identified by synchrotron X-ray absorption spectroscopy and X-ray diffraction. Highest rates of uranium precipitation and phosphatase activity were observed between pH 5.0 and 7.0. Indigenous microorganisms were also stimulated by organophosphate amendment in soils from a contaminated waste site using flow-through reactors. High phosphate concentrations (0.5 to 3 mmol L-1) in pore water effluents were observed within days of organophosphate addition. Highest rates of phosphatase activity occurred at pH 5.5 in naturally low pH soils in the presence of high uranium and nitrate concentrations. The precipitation of uranium phosphate was identified by a combination of pore water measurements, solid phase extractions, synchrotron-based X-ray spectroscopy, and a reactive transport model. The results of this study demonstrate that uranium is biomineralized to a highly insoluble uranyl phosphate mineral as a result of enzymatic hydrolysis of an organophosphate compound over a wide range of pH, in both aerobic and anaerobic conditions, and in the presence of high uranium and nitrate concentrations. The nonreductive biomineralization of U(VI) provides a promising new approach for in situ uranium bioremediation in low pH, high nitrate, and aerobic conditions that could be complementary to U(VI) bioreduction in high pH, low nitrate, and reducing environments.
Sponsor
Date Issued
2009-07-06
Extent
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI