Title:
Accelerated algorithms for composite saddle-point problems and applications

Thumbnail Image
Author(s)
He, Yunlong
Authors
Advisor(s)
Park, Haesun
Advisor(s)
Person
Editor(s)
Associated Organization(s)
Organizational Unit
Organizational Unit
Series
Supplementary to
Abstract
This dissertation considers the composite saddle-point (CSP) problem which is motivated by real-world applications in the areas of machine learning and image processing. Two new accelerated algorithms for solving composite saddle-point problems are introduced. Due to the two-block structure of the CSP problem, it can be solved by any algorithm belonging to the block-decomposition hybrid proximal extragradient (BD-HPE) framework. The framework consists of a family of inexact proximal point methods for solving a general two-block structured monotone inclusion problem which, at every iteration, solves two prox sub-inclusions according to a certain relative error criterion. By exploiting the fact that the two prox sub-inclusions in the context of the CSP problem are equivalent to two composite convex programs, the first part of this dissertation proposes a new instance of the BD-HPE framework that approximately solves them using an accelerated gradient method. It is shown that this new instance has better iteration-complexity than the previous ones. The second part of this dissertation introduces a new algorithm for solving a special class of CSP problems. The new algorithm is a special instance of the hybrid proximal extragradient (HPE) framework in which a Nesterov's accelerated variant is used to approximately solve the prox subproblems. One of the advantages of the this method is that it works for any constant choice of proximal stepsize. Moreover, a suitable choice of the latter stepsize yields a method with the best known (accelerated inner) iteration complexity for the aforementioned class of saddle-point problems. Experiment results on both synthetic CSP problems and real-world problems show that the two method significantly outperform several state-of-the-art algorithms.
Sponsor
Date Issued
2014-11-13
Extent
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI