Title:
MEMS-based fabrication of power electronics components for advanced power converters

Thumbnail Image
Author(s)
Gallé, William Preston
Authors
Advisor(s)
Allen, Mark G.
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
Fabrication technology, based on MEMS processes, for constructing components for use in switched-mode power supplies are developed and presented. Capacitors, magnetic cores, and inductors based on sacrificial multilayer electroplating are designed, fabricated, and characterized. Characterization of the produced inductors' core losses at high frequency and high flux is presented, confirming the aptness of the featured microfabrication processes for reducing eddy current losses in magnetic cores. As well, the demonstration of the same inductors in DC/DC converters at high switching frequencies, up to 6 MHz, is presented. Initial work addressing the top-down development of a fully-integrated DC/DC converter is presented. As well, the comprehensive advancement of the central process - sacrificial multilayer electroplating - is presented, including the development of a second-generation automated multilayer electroplating system. The advanced sacrificial multilayer plating process is applied to produce microfabricated capacitors, which achieved in excess of 1.5 nF/mm² capacitance density, The fabrication of highly-laminated magnetic cores and power inductors based on sacrificial multilayer electroplating is presented, along with the design and development of a system for characterizing inductor behavior at high-frequency, high-flux conditions. The design and operation of both buck and boost DC/DC converters, switching at up to 6 MHz, built around these highly-laminated-core inductors are presented.
Sponsor
Date Issued
2012-08-24
Extent
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI