Title:
Computational Models for Design and Analysis of Compliant Mechanisms

dc.contributor.advisor Lee, Kok-Meng
dc.contributor.author Lan, Chao-Chieh en_US
dc.contributor.committeeMember Ferri, Aldo A.
dc.contributor.committeeMember Bruce Webster
dc.contributor.committeeMember Chen Zhou
dc.contributor.committeeMember Melkote, Shreyes N.
dc.contributor.department Mechanical Engineering en_US
dc.date.accessioned 2007-03-27T18:21:13Z
dc.date.available 2007-03-27T18:21:13Z
dc.date.issued 2005-11-22 en_US
dc.description.abstract We consider here a class of mechanisms consisting of one or more compliant members, the manipulation of which relies on the deflection of those members. Compared with traditional rigid-body mechanisms, compliant mechanisms have the advantages of no relative moving parts and thus involve no wear, backlash, noises and lubrication. Motivated by the need in food processing industry, this paper presents the Global Coordinate Model (GCM) and the generalized shooting method (GSM) as a numerical solver for analyzing compliant mechanisms consisting of members that may be initially straight or curved. As the name suggests, the advantage of global coordinate model is that all the members share the same reference frame, and hence, greatly simplifies the formulation for multi-link and multi-axis compliant mechanisms. The GCM presents a systematic procedure with forward/inverse models for analyzing generic compliant mechanisms. Dynamic and static examples will be given and verified experimentally. We also develop the Generalized Shooting Method (GSM) to efficiently solve the equations given by the GCM. Unlike FD or FE methods that rely on fine discretization of beam members to improve its accuracy, the generalized SM that treats the boundary value problem (BVP) as an initial value problem can achieve higher-order accuracy relatively easily. Using the GCM, we also presents a formulation based on the Nonlinear Constrained Optimization (NCO) techniques to analyze contact problems of compliant grippers. For a planar problem it essentially reduces the domain of discretization by one dimension. Hence it requires simpler formulation and is computationally more efficient than other methods such as finite element analysis. An immediate application for this research is the automated live-bird transfer system developed at Georgia Tech. Success to this development is the design of compliant mechanisms that can accommodate different sizes of birds without damage to them. The feature to be monolithic also makes complaint mechanisms attracting in harsh environments such as food processing plants. Compliant mechanisms can also be easily miniaturized and show great promise in microelectromechanical systems (MEMS). It is expected that the model presented here will have a wide spectrum of applications and will effectively facilitate the process of design and optimization of compliant mechanisms. en_US
dc.description.degree Ph.D. en_US
dc.format.extent 4354284 bytes
dc.format.mimetype application/pdf
dc.identifier.uri http://hdl.handle.net/1853/14076
dc.language.iso en_US
dc.publisher Georgia Institute of Technology en_US
dc.subject Compliant gripper en_US
dc.subject Shooting method en_US
dc.subject Compliant mechanism en_US
dc.title Computational Models for Design and Analysis of Compliant Mechanisms en_US
dc.type Text
dc.type.genre Dissertation
dspace.entity.type Publication
local.contributor.advisor Lee, Kok-Meng
local.contributor.corporatename George W. Woodruff School of Mechanical Engineering
local.contributor.corporatename College of Engineering
relation.isAdvisorOfPublication 08db58e1-f73e-4696-8556-a81b1bf99e81
relation.isOrgUnitOfPublication c01ff908-c25f-439b-bf10-a074ed886bb7
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
lan_chao-chieh_200512_phd.pdf
Size:
4.15 MB
Format:
Adobe Portable Document Format
Description: