Title:
Population genetics and genomics of eusocial animals

dc.contributor.advisor Goodisman, Michael
dc.contributor.author Chau, Linh M.
dc.contributor.committeeMember Yi, Soojin V.
dc.contributor.committeeMember McGrath, Patrick
dc.contributor.committeeMember Gerardo, Nicole
dc.contributor.committeeMember Mendelson, Joseph R.
dc.contributor.department Biology
dc.date.accessioned 2018-01-22T21:11:32Z
dc.date.available 2018-01-22T21:11:32Z
dc.date.created 2017-12
dc.date.issued 2017-11-09
dc.date.submitted December 2017
dc.date.updated 2018-01-22T21:11:32Z
dc.description.abstract Major evolutionary transitions have been associated with increases in organismal complexity. One of the latest evolutionary transitions is from solitary life to eusociality. This transition led to a reproductive division of labor in which individuals are divided into castes. Reproductive castes are responsible for reproduction, while nonreproductive castes take part in colony maintenance and brood care. This division of labor represents a challenge to selection and has long been of curiosity to researchers. My dissertation research examined the population genetics and genomics of eusociality in a spectrum of eusocial species. First, I examined the population structure and genetic diversity of Vespula pensylvanica, a wasp native to North America that has invaded the Hawaiian archipelago. I found a lack of population structure in V. pensylvanica’s native range and determined how the population structure of invasive social insects can be shaped by geography. I also examined the population genetics of captive naked mole rats, one of the only known eusocial mammals. I sought to understand how captivity can shape the population structure of a eusocial animal. Interestingly, there was evidence that naked mole rat populations are not as inbred as previously theorized and that sex ratios are equal within captive colonies. Finally, I examined how the phenomenon of gene duplication can affect the evolution of castes in eusocial species. I uncovered a relationship between duplication rate and level of sociality across the bees. Also, I saw that duplicates were differently expressed across phenotypes compared to single copy genes. These studies provide insight on an array of population genetic and genomic questions concerning the evolution of eusociality. Therefore, this research furthers our understanding of the rare distribution of this social system across the tree of life.
dc.description.degree Ph.D.
dc.format.mimetype application/pdf
dc.identifier.uri http://hdl.handle.net/1853/59246
dc.language.iso en_US
dc.publisher Georgia Institute of Technology
dc.subject Sociality
dc.subject Gene duplication
dc.subject Microsatellites
dc.title Population genetics and genomics of eusocial animals
dc.type Text
dc.type.genre Dissertation
dspace.entity.type Publication
local.contributor.advisor Goodisman, Michael
local.contributor.corporatename College of Sciences
local.contributor.corporatename School of Biological Sciences
relation.isAdvisorOfPublication 2faca532-8efe-4121-8aa0-1e72157324ce
relation.isOrgUnitOfPublication 85042be6-2d68-4e07-b384-e1f908fae48a
relation.isOrgUnitOfPublication c8b3bd08-9989-40d3-afe3-e0ad8d5c72b5
thesis.degree.level Doctoral
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
CHAU-DISSERTATION-2017.pdf
Size:
3.39 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
3.86 KB
Format:
Plain Text
Description: