Title:
Solving a mixed-integer programming formulation of a classification model with misclassification limits

dc.contributor.advisor Lee, Eva K.
dc.contributor.author Brooks, J. Paul en_US
dc.contributor.committeeMember Johnson, Ellis L.
dc.contributor.committeeMember Nemhauser, George L.
dc.contributor.committeeMember Prausnitz, Mark
dc.contributor.committeeMember Vidakovic, Brani
dc.contributor.department Industrial and Systems Engineering en_US
dc.date.accessioned 2006-01-18T22:14:03Z
dc.date.available 2006-01-18T22:14:03Z
dc.date.issued 2005-08-25 en_US
dc.description.abstract Classification, the development of rules for the allocation of observations to one or more groups, is a fundamental problem in machine learning and has been applied to many problems in medicine and business. We consider aspects of a classification model developed by Gallagher, Lee, and Patterson that is based on a result by Anderson. The model seeks to maximize the probability of correct G-group classification, subject to limits on misclassification probabilities. The mixed-integer programming formulation of the model is an empirical method for estimating the parameters of an optimal classification rule, which are identified as coefficients of linear functions by Anderson. The model is shown to be a consistent method for estimating the parameters of the optimal solution to the problem of maximizing the probability of correct classification subject to limits on inter-group misclassification probabilities. A polynomial time algorithm is described for two-group instances. The method is NP-complete for a general number of groups, and an approximation is formulated as a mixed-integer program (MIP). The MIP is difficult to solve due to the formulation of constraints wherein certain variables are equal to the maximum of a set of linear functions. These constraints are conducive to an ill-conditioned coefficient matrix. Methods for generating edges of the conflict graph and conflict hypergraphs are discussed. The conflict graph is employed for finding cuts in a branch-and-bound framework. This technique and others lead to improvement in solution time over industry-standard software on instances generated by real-world data. The classification accuracy of the model in relation to standard classification methods on real-world and simulated data is also noted. en_US
dc.description.degree Ph.D. en_US
dc.format.extent 1129431 bytes
dc.format.mimetype application/pdf
dc.identifier.uri http://hdl.handle.net/1853/7473
dc.language.iso en_US
dc.publisher Georgia Institute of Technology en_US
dc.subject Machine learning en_US
dc.subject Mathematical programming
dc.subject Classification
dc.subject Integer programming
dc.subject Discriminant analysis
dc.title Solving a mixed-integer programming formulation of a classification model with misclassification limits en_US
dc.type Text
dc.type.genre Dissertation
dspace.entity.type Publication
local.contributor.corporatename H. Milton Stewart School of Industrial and Systems Engineering
local.contributor.corporatename College of Engineering
relation.isOrgUnitOfPublication 29ad75f0-242d-49a7-9b3d-0ac88893323c
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
brooks_j_paul_200512_phd.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
Description: