Spatio-temporal multi-robot routing

We analyze spatio-temporal routing under various constraints specific to multi-robot applications. Spatio-temporal routing requires multiple robots to visit spatial locations at specified time instants, while optimizing certain criteria like the total distance traveled, or the total energy consumed. Such a spatio-temporal concept is intuitively demonstrable through music (e.g. a musician routes multiple fingers to play a series of notes on an instrument at specified time instants). As such, we showcase much of our work on routing through this medium. Particular to robotic applications, we analyze constraints like maximum velocities that the robots cannot exceed, and information-exchange networks that must remain connected. Furthermore, we consider a notion of heterogeneity where robots and spatial locations are associated with multiple skills, and a robot can visit a location only if it has at least one skill in common with the skill set of that location. To extend the scope of our work, we analyze spatio-temporal routing in the context of a distributed framework, and a dynamic environment.
Date Issued
Resource Type
Resource Subtype
Rights Statement
Rights URI