Centurion: A Heavy-Lift Launch Vehicle Family for Cis-Lunar Exploration

Thumbnail Image
Young, David Anthony
Olds, John R.
Hutchinson, Virgil L., Jr.
Krevor, Zachary C.
Pimentel, Janssen
Reeves, John Daniel
Sakai, Tadashi
Young, James J.
Associated Organizations
Supplementary to
Centurion is an expendable heavy lift launch vehicle (HLLV) family for launching lunar exploration missions. Each vehicle in the family is built around a common two-stage core. The first stage of the core uses kerosene (RP-1) fuel and utilizes four staged-combustion RD-180 rocket engines. The upper stages consist of liquid oxygen (LOX)/liquid hydrogen (LH2) propellant with three 220,000 lb thrust-class expander rocket engines. The larger variants in the Centurion family will also use either one or two pairs of five-segment solid rocket motors which are now being developed by ATK Thiokol. The Centurion family consists of three vehicles denoted as C-1, C-2, and C-3. The first vehicle (C-1) is a four RD-180 core with a LOX/LH2 upper stage. The C-1 is designed to deliver a 35 metric ton (MT) CEV to a 300 km x 1000 km highly elliptical orbit (HEO). This HEO allows the CEV to more easily transfer to a lunar trajectory, while still having the ability to abort after one revolution. The C-1 also is designed to meet mission requirements with a failure of both one RD-180 and one upper stage engine. The C-2 and C-3 Centurions are both cargo carrying variants which carry 100 MT and 142 MT of cargo to a 407 km low earth orbit (LEO) respectively. The C-2 utilizes two five-segment solid rocket boosters (SRB), while the C-3 uses four SRBs. Details of the conceptual design process used for Centurion are included in this paper. The disciplines used in the design include configuration, aerodynamics, propulsion design and selection, trajectory, mass properties, structural design, aeroheating and thermal protection systems (TPS), cost, operations, and reliability and safety. Each of these disciplines was computed using a conceptual design tool similar to that used in industry. These disciplines were then combined into an integrated design team process and used to minimize the gross weight of the C-1 variant. The C-2 and C-3 variants were simulated using the C-1 optimized core with different configurations of SRBs. Each of the variants recurring and non-recurring costs were computed. The total development cost including the design, development, testing and evaluation (DDT&E) cost and a new launch pad at Kennedy Space Center (KSC), was 7.98 B FY04 dollars. The theoretical first unit (TFU) cost for the C-2 variant was 532 M FY04 dollars. A summary of design disciplines as well as the economic results are included.
Date Issued
702520 bytes
Resource Type
Resource Subtype
Rights Statement
Rights URI